
inStrain
Release 1.0.0

Feb 21, 2023

Contents

1 Contents 3
1.1 Installation . 3
1.2 Glossary & FAQ . 4
1.3 Important concepts . 9
1.4 Tutorial . 25
1.5 User Manual . 37
1.6 Expected output . 57
1.7 Raw data access and API . 85
1.8 Benchmarks . 91
1.9 Acknowledgements . 101

Index 103

i

ii

inStrain, Release 1.0.0

InStrain is a tool for analysis of co-occurring genome populations from metagenomes that allows highly accurate
genome comparisons, analysis of coverage, microdiversity, and linkage, and sensitive SNP detection with gene local-
ization and synonymous non-synonymous identification

Source code is available on GitHub.

Publication is available in Nature Biotechnology and on bioRxiv

See links to the left for Installation instructions

Bugs reports and feature requests can be submitted through GitHub.

InStrain was developed by Matt Olm and Alex Crits-Christoph in the Banfield Lab at the University of California,
Berkeley.

Contents 1

https://github.com/MrOlm/instrain
https://doi.org/10.1038/s41587-020-00797-0
https://www.biorxiv.org/content/10.1101/2020.01.22.915579v1
https://github.com/MrOlm/instrain/issues
mailto:mattolm@stanford.edu
mailto:crits-christoph@berkeley.edu
https://geomicrobiology.berkeley.edu/

inStrain, Release 1.0.0

2 Contents

CHAPTER 1

Contents

1.1 Installation

1.1.1 Installation

InStrain is written in python. There are a number of ways that it can be installed.

pip

To install inStrain using the PyPi python repository, simply run

$ pip install instrain

That’s it!

Pip is a great package with many options to change the installation parameters in various ways. For details, see pip
documentation

bioconda

To inStrain inStrain from bioconda, run

$ conda install -c conda-forge -c bioconda -c defaults instrain

From source

To install inStrain from the source code, run

3

https://packaging.python.org/installing/
https://packaging.python.org/installing/
https://anaconda.org/bioconda/instrain

inStrain, Release 1.0.0

$ git clone https://github.com/MrOlm/instrain.git

$ cd instrain

$ pip install .

Dependencies

inStrain requires a few other programs to run. Not all dependencies are needed for all operations. There are a number
of python package dependencies, but those should install automatically when inStrain is installed using pip

Essential

• samtools This is needed for pysam

Optional

• coverM This is needed for the quick_profile operation

• Prodigal This is needed to profile on a gene by gene level

1.1.2 Pre-built genome database

An established set of public genomes can be downloaded for your inStrain analysis at the following link -
https://doi.org/10.5281/zenodo.4441269. See Tutorial #2 in Tutorial for usage instructions.

1.1.3 Docker image

A Docker image with inStrain and dependencies already installed is available on Docker Hub at mattolm/instrain. This
image also has a wrapper script in it to make it easier to use inStrain with AWS. See the docker folder of the GitHub
page for use instructions.

1.2 Glossary & FAQ

1.2.1 Glossary of terms used in inStrain

Note: This glossary is meant to give a conceptual overview of the terms used in inStrain. See Expected output for
explanations of specific output data.

ANI Average nucleotide identity. The average nucleotide distance between two genomes or .fasta files. If two
genomes have a difference every 100 base-pairs, the ANI would be 99%

conANI Consensus ANI - average nucleotide identity values calculated based on consensus sequences. This is com-
monly reported as “ANI” in other programs. Each position on the genome is represented by the most common
allele (also referred to as the consensus allele), and minor alleles are ignored.

popANI Population ANI - a new term to describe a unique type of ANI calculation performed by inStrain that con-
siders both major and minor alleles. If two populations share any alleles at a loci, including minor alleles, it
does not count as a difference when calculating popANI. It’s easiest to describe with an example: consider a
genomic position where the reference sequence is ‘A’ and 100 reads are mapped to the position. Of the 100
mapped reads, 60 have a ‘C’ and 40 have an ‘A’ at this position. In this example the reads share a minor allele

4 Chapter 1. Contents

http://www.htslib.org
https://github.com/wwood/CoverM
https://github.com/hyattpd/Prodigal
https://doi.org/10.5281/zenodo.4441269
https://doi.org/10.5281/zenodo.4441269
https://hub.docker.com/repository/docker/mattolm/instrain
https://github.com/MrOlm/inStrain/tree/v1.3.0/docker
https://github.com/MrOlm/inStrain/tree/v1.3.0/docker

inStrain, Release 1.0.0

with the reference genome at the position, but the consensus allele (most common allele) is different. Thus, this
position would count as a difference in conANI calculations (because the consensus alleles are different) and
would not count as a difference in popANI calculations (because the reference sequence is present as an allele
in the reads). See Important concepts for examples.

Representative genomes (RGs) are genomes that are used to represent some taxa. For example you could have
a series of representative genomes to represent each clade of E. coli (one genome for each clade), or you could
have one representative genome for the entire species of E. coli (in that case it would be a Species Representative
Genome (SRG)). The base unit of inStrain-based analysis is the representative genome, and they are usually
generated using the program dRep

Species representative genome A Species Representative Genome (SRG) is a representative genome that is used to
represent an entire single microbial species.

Genome database A collection of representative genomes that are mapped to simultaneously (competitive mapping).

nucleotide diversity A measurement of genetic diversity in a population (microdiversity). We measure nucleotide
diversity using the method from Nei and Li 1979 (often referred to as ‘pi’ 𝜋 in the population genetics world).
InStrain calculates nucleotide diversity at every position along the genome, based on all reads, and averages
values across genes / genomes. This metric is influenced by sequencing error, but within study error rates
should be consistent and this effect is often minor compared to the extent of biological variation observed within
samples. This metric is nice because it is not affected by coverage. The formula for calculating nucleotide
diversity is the sum of the frequency of each base squared: 1 - [(frequency of A)^2 + (frequency of C)^2 +
(frequency of G)^2 + (frequency of T)^2].

microdiversity We use the term microdiversity to refer to intraspecific genetic variation, i.e. the genetic variation
between cells within a microbial species.

clonality The opposite of nucleotide diversity (1 - nucleotide diversity). A deprecated term used in older versions of
the program.

SNV Single nucleotide variant. A single nucleotide change that is present in a faction of a population. Can also be
described as a genomic loci with multiple alleles present. We identify and call SNVs using a simple model
to distinguish them from errors, and more importantly in our experience, careful read mapping and filtering of
paired reads to be assured that the variants (and the reads that contain them) are truly from the species being
profiled, and not from another species in the metagenome (we call it ‘mismapping’ when this happens). Note
that a SNV refers to genetic variation within a read set.

SNS Single nucleotide substitution. A single nucleotide change that has a fixed difference between two populations.
If the reference genome has a ‘A’ at some position, but all of the reads have a ‘C’ at that position, that would be
a SNS (if half of the reads have an ‘A’ and half of the reads have a ‘C’, that would be an SNV).

divergent site A position in the genome where either an SNV or SNS is present.

SNP Single Nucleotide Polymorphism. In our experience this term means different things to different people, so we
have tried to avoid using it entirely (instead referring to SNSs, SNVs, and divert sites).

linkage A measure of how likely two divergent sites are to be inherited together. If two alleles are present on the
same read, they are said to be “linked”, meaning that they are found together on the same genome. Loci are
said to be in “linkage disequilibrium” when the frequency of association of their different alleles is higher or
lower than what would be expected if the loci were independent and associated randomly. In the context of
microbial population genetics, linkage decay is often used as a way to detect recombination among members of
a microbial population. InStrain uses the metrics r2 (r squared) and D’ (D prime) to measure linkage.

coverage A measure of sequencing depth. We calculate coverage as the average number of reads mapping to a region.
If half the bases in a scaffold have 5 reads on them, and the other half have 10 reads, the coverage of the scaffold
will be 7.5

breadth A measure of how much of a region is covered by sequencing reads. Breadth is an important concept that is
distinct from sequencing coverage, and gives you an approximation of how well the reference sequence you’re

1.2. Glossary & FAQ 5

https://drep.readthedocs.io/en/latest/

inStrain, Release 1.0.0

using is represented by the reads. Calculated as the percentage of bases in a region that are covered by at least a
single read. A breadth of 1 means that all bases in a region have at least one read covering them

expected breadth The breadth that would be expected if reads are evenly distributed along the genome, given a
specific coverage value. Based on the function breadth = 1 - e ^{-0.883 * coverage}. This is useful to establish
whether or not the scaffold is actually in the reads, or just a fraction of the scaffold. If your coverage is 10x, the
expected breadth will be ~1. If your actual breadth is significantly lower then the expected breadth, this means
that reads are mapping only to a specific region of your scaffold (transposon, prophage, etc.). See Important
concepts for more info.

relative abundance The percentage of total reads that map a particular entity. If a metagenome has 1,000,000 reads
and 1,000 reads to a particular genome, that genome is at 0.1% relative abundance

contig A contiguous sequence of DNA. Usually used as a reference sequence for mapping reads against. The terms
contig and scaffold are used interchangeably by inStrain.

scaffold A sequence of DNA that may have a string of “N”s in it representing a gap of unknown length. The terms
contig and scaffold are used interchangeably by inStrain.

iRep A measure of how fast a population was replicating at the time of DNA extraction. Based on comparing the se-
quencing coverage at the origin vs. terminus of replication, as described in Brown et. al., Nature Biotechnology
2016

mutation type Describes the impact of a nucleotide mutation on the amino acid sequence of the resulting protein. N
= non-synonymous mutation (the encoded amino-acid changes due to the mutation). S = synonymous mutation
(the encoded amino-acid does not change due to the mutation; should happen ~1/6 of the time by random chance
due to codon redundancy). I = intergenic mutation. M = multi-allelic SNV with more than one change (rare).

dN/dS A measure of whether the set of mutations in a gene are biased towards synonymous (S) or non-synonymous
(N) mutations. dN/dS is calculated based on mutations relative to the reference genome. dN/dS > 1 means the
bias is towards N mutations, indicating the gene is under active selection to mutate. dN/dS < 1 means the bias
is towards S mutations, indicated the gene is under stabilizing selection to not mutate. dN/dS = 1 means that
N and S mutations are at the rate expected by mutating positions randomly, potentially indicating the gene is
non-functional.

pN/pS Very similar to dN/dS, but calculated at positions with at least two alleles present rather than in relation to the
reference genome.

fasta file A file containing a DNA sequence. Details on this file format can be found on wikipedia

bam file A file containing metagenomic reads mapped to a DNA sequence. Very similar to a .sam file. Details can be
found online

scaffold-to-bin file A .text file with two columns separated by tabs, where the first column is the name of a scaffold
and the second column is the name of the bin / genome the scaffold belongs to. Can be created using the script
parse_stb.py that comes with the program dRep See Expected output for more info

genes file A file containing the nucleotide sequences of all genes to profile, as called by the program Prodigal. See
Expected output for more info

mismapped read A read that is erroneously mapped to a genome. InStrain profiles a population by looking at the
reads mapped to a genome. These reads are short, and sometimes reads that originated from one microbial
population map to the representative genome of another (for example if they share homology). There are several
techniques that can be used to reduce mismapping to the lowest extent possible.

multi-mapped read A read that maps equally well to multiple different locations in the .fasta file. Most mapping
software will randomly select one position to place multi-mapped reads. There are several techniques that can
be used to reduce multi-mapped reads to the lowest extent possible, including increasing the minimum MAPQ
cutoff to >2 (which will eliminate them entirely).

6 Chapter 1. Contents

http://dx.doi.org/10.1038/nbt.3704
http://dx.doi.org/10.1038/nbt.3704
https://en.wikipedia.org/wiki/FASTA_format
https://samtools.github.io/hts-specs/SAMv1.pdf
https://github.com/MrOlm/drep/blob/master/helper_scripts/parse_stb.py

inStrain, Release 1.0.0

inStrain profile An inStrain profile (aka IS_profile, IS, ISP) is created by running the inStrain profile com-
mand. It contains all of the program’s internal workings, cached data, and is where the output is stored. Ad-
ditional commands can then be run on an IS_profile, for example to analyze genes, compare profiles, etc., and
there is lots of nice cached data stored in it that can be accessed using python.

null model The null model describes the probability that the number of true reads that support a variant base could
be due to random mutation error, assuming Q30 score. The default false discovery rate with the null model is
1e-6 (one in a million).

mm The maximum number of mismatches a read-pair can have to be considered in the metric being considered.
Behind the scenes, inStrain actually calculates pretty much all metrics for every read pair mismatch level. That
is, only including read pairs with 0 mismatches to the reference sequences, only including read pairs with >= 1
mis-match to the reference sequences, all the way up to the number of mismatches associated with the “PID”
parameter. Most of the time when it then generates user-facing output, it uses the highest mm possible and
deletes the column label. If you’d like access to information on the mm-level, see the section titled “Dealing
with mm”

mapQ score MapQ scores are a measure of how well a read aligns to a particular position. They are assigned to each
read mapped by bowtie2, but the details of how they are generated are incredibly confusing (see the following
link for more information). MapQ scores of 0 and 1 have a special meaning: if a read maps equally well to
multiple different locations on a .fasta file, it always gets a MapQ score of 0 or 1.

1.2.2 FAQ (Frequently asked questions)

How does inStrain compare to other bioinformatics tools for strains analysis?

A major difference is inStrain’s use of the popANI and conANI, which allow consideration of minor alleles when
performing genomic comparisons. See Important concepts for more information.

What can inStrain do?

inStrain includes calculation of nucleotide diversity, calling SNPs (including non-synonymous and synonymous vari-
ants), reporting accurate coverage / breadth, and calculating linkage disequilibrium in the contexts of genomes, contigs,
and individual genes.

inStrain also includes comparing the frequencies of fixed and segregating variants between sequenced populations
with extremely high accuracy, out-performing other popular strain-resolved metagenomics programs.

The typical use-case is to generate a .bam file by mapping metagenomic reads to a bacterial genome that is present in
the metagenomic sample, and using inStrain to characterize the microdiversity present.

Another common use-case is detailed strain comparisons that involve comparing the genetic diversity of two popula-
tions and calculating the extent to which they overlap. This allows for the calculation of population ANI values for
extremely similar genomic populations (>99.999% average nucleotide identity).

See also:

Installation To get started using the program

Expected output To view example output

User Manual For information on how to prepare data for inStrain and run inStrain

Important concepts For detailed information on how to make sure inStrain is running correctly

1.2. Glossary & FAQ 7

http://biofinysics.blogspot.com/2014/05/how-does-bowtie2-assign-mapq-scores.html

inStrain, Release 1.0.0

How does inStrain work?

The reasoning behind inStrain is that every sequencing read is derived from a single DNA molecule (and thus a
single cell) in the original population of a given microbial species. During assembly, the consensus of these reads
are assembled into contigs and these contigs are binned into genomes - but by returning to assess the variation in the
reads that assembled into the contigs, we can characterize the genetic diversity of the population that contributed to
the contigs and genomes.

The basic steps:

1. Map reads to a .fasta file to create a .bam file

2. Stringently filter mapped reads and calculate coverage and breadth

3. Calculate nucleotide diversity and SNVs

4. Calculate SNV linkage

5. Optional: calculate gene statistics and SNV function

6. Optional: compare SNVs between samples.

What is unique about the way that inStrain compares strains?

Most strain-resolved pipelines compare the dominant allele at each position. If you have two closely related strains
A and B in sample 1, with B being at higher abundance, and two closely related strains A and C in sample 2, with C
being at higher abundance, most strain comparison pipelines will in actuality compare strain B and C. This is because
they work on the principle of finding the dominant strain in each sample and then comparing the dominant strains.
InStrain, on the other hand, is able to identify the fact that A is present in both samples. This is because it doesn’t
just compare the dominant alleles, but compares all alleles in the two populations. See module_descriptions and
choosing_parameters for more information.

What is a population?

To characterize intra-population genetic diversity, it stands to reason that you first require an adequate definition of
“population”. InStrain relies mainly on population definitions that are largely technically limited, but also coincide
conveniently with possibly biological real microbial population constraints (see Olm et. al. mSystems 2020 and Jain
et. al. Nature Communications 2018). Often, we dereplicate genomes from an environment at average nucleotide
identities (ANI) from 95% to 99%, depending on the heterogeneity expected within each sample - lower ANIs might
be preferred with more complex samples. We then assign reads to each genome’s population by stringently requiring
that combined read pairs for SNP calling be properly mapped pairs with an similarity to the consensus of at least 95%
by default, so that the cell that the read pair came from was at least 95% similar to the average consensus genotype at
that position. Within an environment, inStrain makes it possible to adjust these parameters as needed and builds plots
which can be used to estimate the best cutoffs for each project.

What are inStrain’s computational requirements?

The two computational resources to consider when running inStrain are the number of processes given (-p) and the
amount of RAM on the computer (usually not adjustable unless using cloud-based computing). Using inStrain v1.3.3,
running inStrain on a .bam file of moderate size (1 Gbp of less) will generally take less than an hour with 6 cores, and
use about 8Gb of RAM. InStrain is designed to handle large .bam files as well. Running a huge .bam file (30 Gbp)
with 32 cores, for example, will take ~2 hours and use about 128Gb of RAM. The more processes you give inStrain
the longer it will run, but also the more RAM it will use. See Important concepts for information on reducing compute
requirements.

8 Chapter 1. Contents

https://msystems.asm.org/content/5/1/e00731-19
https://www.nature.com/articles/s41467-018-07641-9
https://www.nature.com/articles/s41467-018-07641-9

inStrain, Release 1.0.0

How can I infer the relative abundance of each strain cluster within the metagenomes?

At the moment you can only compare the relative abundance of the populations between samples. Say strain A, based
on genome X, is in samples 1 and 2. You now know that genome X is the same strain in both samples, so you could
compare the relative abundance of genome X in samples 1 and 2. But if multiple strains are present within genome X,
there’s no way to phase them out.

InStrain compare isn’t really phasing out multiple strains in a sample, it’s just seeing if there is micro-diversity overlap
between samples. Conceptually inStrain operates on the idea of “strain clouds” more than distinct strains. InStrain
isn’t able to tell the number of strains that are shared between two samples either, just that there is population-level
overlap for some particular genome. Doing haplotype phasing is something we’ve considered and may add in the
future, but the feature won’t be coming any time in the near future.

How can I determine the relative abundance of detected populations?

Relative abundance can be calculated a number of different ways, but the way I like to do it “percentage of reads”. So
if your sample has 100 reads, and 15 reads map to genome X, the relative abundance of genome X is 15%. Because
inStrain does not know the number of reads per sample, it cannot calculate this metric for you. You have to calculate
it yourself by dividing the total reads in the sample by the value filtered_read_pair_count reported in the inStrain
genome_wide output.

What mapping software can be used to generate .bam files for inStrain?

Bowtie2 is a common one the works well, but any software that generates .bam files should work. Some map-
ping software modifies .fasta file headers during mapping (including the tool BBMap and SNAP). Include the flag
--use_full_fasta_header when mapping with these programs to properly handle this.

1.3 Important concepts

There are a number of things to be aware of when performing metagenomic analysis with inStrain. This page will
address the following key concepts:

1. An overview of inStrain and the data it generates. A brief introduction to microbial population genomics.

2. Representative genomes and their utility. InStrain runs on “representative genomes”; this section describes what
they are and the benefit of using them.

3. Picking and evaluating representative genomes. Some things to think about when picking and mapping to
representative genomes.

4. Establishing and evaluating genome databases. Some things to think about when dereplicating genomes to create
a genome database.

5. Handling and reducing mis-mapping reads. Ways to ensure that sequencing reads align to the correct genomes.

6. Detecting organisms in metagenomic data. Determining whether an organism is “present” in a sample is more
complicated than meets the eye.

7. Strain-level comparisons and popANI. A description of how inStrain performs detailed strain-level comparisons
with the popANI metric.

8. Thresholds for determining “same” vs. “different” strains. How similar do strains need to be for them to be
considered identical?

9. Importance of representative genomes when calculating popANI. Appropriate representative genomes are need
for popANI to work correctly.

1.3. Important concepts 9

inStrain, Release 1.0.0

10. Using inStrain for gene-based functional analysis. Some ways to tie inStrain results to gene-based functional
questions.

11. Reducing inStrain resource usage. Tips to reduce inStrain run-time and RAM usage.

1.3.1 1. An overview of inStrain and the data it generates

InStrain is a program for microbial metagenomic analysis. When you sequence any microbial genome(s), you se-
quence a population of cells. This population may be a nearly clonal population grown up from an isolate in a culture
flask, or a highly heterogeneous population in the real world, but there is always real biological genetic heterogeneity
within that population. Every cell does not have the same genotype at every single position. InStrain can determine
organism presence / absence in a community, measure and interrogate the genetic heterogeneity in microbial
population, and perform detailed comparisons between organisms in different samples.

A community is a collection of taxa in a metagenome. After mapping your metagenomic reads to a set of representative
genomes, inStrain can generate a number of metrics that help understand community composition. These include
the percentage of reads that map to your representative genome database, the abundance of each microbe in the
community, and a detailed picture of the organisms that are present or absent (measured using breadth of coverage,
expected breadth of coverage, and coverage s.e.m).

A population is the collection of cells that make up an individual taxa in a community. After mapping your
metagenomic reads to a set of representative genomes, inStrain can generate a number of metrics characterizing the
population-level diversity of each detected organism. These metrics include nucleotide diversity, SNSs and SNVs,
linkage, pN/pS, iRep, and others. Most metrics are calculated on the gene level, scaffold level, and genome level.

Strain-level comparisons between populations in different communities are notoriously different to perform with high
accuracy. After profiling the communities of metagenomic samples, inStrain can compare the populations in the
different communities in a highly-accurate manner by taking into account the population-level diversity. This analysis
reports comparison metrics including the percentage of the genome covered in each sample, popANI, conNI, and the
locations of all differences between strains.

The above figure provides a conceptual overview of the steps involved when running inStrain.

1.3.2 2. Representative genomes and their utility

Representative genomes are genomes that are chosen to represent some group of taxa, and they are the base unit of
inStrain-based metagenomic analyses. If one wanted to study the species-level composition of a community with
inStrain they would use a set of Species representative genomes (SRGs), but Representative genomes can also be used
at more specific taxonomic levels. They are similar to OTUs in 16S-based analysis. There are some things to be aware
of when using Representative genomes, including ensuring that they truly represent the taxa they are meant to, but
using them has several advantages over other common approaches.

10 Chapter 1. Contents

inStrain, Release 1.0.0

1.3. Important concepts 11

inStrain, Release 1.0.0

The above figure shows a visual representation of k-mer based metagenomic analysis, gene-based metagenomic anal-
ysis, and Representative genome based metagenomic analysis. Advantages include the ability to align full read pairs
to target sequences, use the entire genome to determine presence and absence (significantly improving detection accu-
racy; see Benchmarks for proof), and perform high-resolution comparisons, among other things.

A collection of representative genomes is referred to as a Genome database. Genome databases can be downloaded
from public repositories, generated via de novo sequence assembly and binning, or a combination of the two. It is
important to ensure that each genome in the Genome database is distinct enough from other genomes in the database
to avoid mapping confusion, and by mapping to all genomes in a Genome database simultaneously (competitively)
one can significantly reduce the number of mis-mapped reads overall.

The figure above provides a visual overview of options for generating Genome databases for use with inStrain. For
technical details on how this is done, see User Manual. For a pre-generated Genome database for immediate download,
see Tutorial.

1.3.3 3. Picking and evaluating representative genomes

Representative genomes are typically chosen by first clustering a set of genomes using some ANI threshold, and second
picking a single genome to represent each cluster. Choosing ANI thresholds are discussed in the section below. A good
Representative genome is high quality, contiguous, shares a high degree of gene content with the taxa it is meant to
represent, and has a similar ANI to all genomes it’s meant to represent. The program dRep is commonly used to pick
representative genomes, and it uses a scoring system to score each genome and pick the genome with the highest score.

Running inStrain profile will generate a plethora of information about each Representative genome detected
in your sample (see Expected output). This information can be used to determine how good of a fit each representative
genome is to the true population that it is recruiting reads from. Helpful metrics are mean read ANI, reference conANI,
reference popANI, and breadth vs. expected breath. If there are regions of the genome with much higher coverage
than the rest, it is likely that that region is recruiting reads from another population (mismapped read). Looking at
these wavy coverage patterns can be confusing, however. Here is a link for more information on this phenomenon.

One way of increasing the similarity between a Representative genome and the organisms in your sample is to assemble
genomes from your sample directly. Something to keep in mind is that when multiple closely related genomes are
present in a sample, the assembly algorithm can break and you can fail to recover genomes from either organism. A
solution to this problem is to assemble and bin genomes from all metagenomic samples individually, and dereplicate
the genome set at the end. For more information on this, see the publication “dRep: a tool for fast and accurate
genomic comparisons that enables improved genome recovery from metagenomes through de-replication”

1.3.4 4. Establishing and evaluating genome databases

Genome databases are typically created by clustering a set of genomes using some ANI threshold using the program
dRep. The dRep documentation describes some considerations to think about when choosing an ANI threshold. The
most common thresholds are 95% ANI, which represents species-level clustering (Olm mSystems 2020), and 98%

12 Chapter 1. Contents

https://drep.readthedocs.io/en/latest/
https://drep.readthedocs.io/en/latest/choosing_parameters.html#choosing-representative-genomes
http://merenlab.org/2016/12/14/coverage-variation/
https://www.nature.com/articles/ismej2017126
https://www.nature.com/articles/ismej2017126
https://drep.readthedocs.io/en/latest/choosing_parameters.html#choosing-an-appropriate-secondary-ani-threshold
https://msystems.asm.org/content/5/1/e00731-19

inStrain, Release 1.0.0

ANI, which is about the most stringent threshold recommended. Using either of these thresholds is generally a safe
bet, and which threshold you choose depends on the level of resolution you’d like to perform your analysis at. These
thresholds are ensure that genomes are distinct enough from each other, but not too distinct. Details on why this is
important are below.

a) Ensure that genomes are distinct from one another.

Note: When genomes share stretches of identical sequence, read mapping software cannot reliably determine which
genome a read should map to. The exact level of how distinct genomes need to be depends on the read length and the
heterogeneity of differences across the genome, but having a maximum of 98% ANI between all genomes in the
genome database is a good rule of thumb.

When mapping to a Genome database, if bowtie2 finds a read that maps equally well to multiple different positions in
your fasta file it will randomly choose one of the two positions to place the read at. This is the best thing it could do,
as you don’t want reads “duplicated” and mapped to multiple positions, but it also means that you really don’t want
to have multiple positions in your .fasta file that are identical. The reason we go through the hassle of dereplication
to generate a Genome database is to limit the number of positions in which the alignment algorithm cannot tell where
the read should actually map to, and this is why we can’t just map to all possible genomes.

To determine how distinct genomes need to be to avoid having identical regions, we performed a simple experiment.
We mapped to a randomly selected genome in isolation, and in the context of many other genomes in a Genome
database dereplicated at 99.8% ANI. We then looked for reads that mapped to the genome of interest when mapping
to that genome individually, but mapped elsewhere when mapping in the context of the entire Genome database. The
results from this experiment are displayed below.

Each dot represents a genome in the full Genome database, the position on the x-axis indicates that genome’s ANI to
the genome of interest (orange dot), and the position on the y-axis indicates the number of reads that were “stolen”
from the genome of interest (stolen reads are those that mapped to the genome of interest when mapped in isolation,
but mapped to a different genome when mapped in the context of the entire Genome database). As you can see, the
more closely related an alternate genome is to a genome of interest, the more likely it is to steal reads. This makes
sense, because assuming that the genomes represented by blue dots are not actually present in the sample (likely true
in this case), the only way these genomes have reads mapped to them is by having regions that are identical to the
genome that is actually present in the sample. In fact, you can even calculate the probability of having an identical
region as long as a pair of reads (190bp in this case; 2 x 95bp) based on the genome ANI using the formula:

Probability of 190bp fragment = (genome ANI)190

1.3. Important concepts 13

inStrain, Release 1.0.0

This simple formula was used to generate the black dotted line in the figure above. The line fits observed trend
remarkably well, providing pretty compelling evidence that simple genome-ANI-based read stealing explains the
phenomena. To be sure though, we can did final check based on mapQ score. Reads that map equally well to multiple
different locations in a fasta file always get a MapQ score of 0-2. Thus, by filtering out reads with MapQ scores <
2, we can see reads that map uniquely to one genome only. Below we will re-generate the above figure while only
including reads with mapQ scores above 2.

Just as we suspected, reads no longer map to alternate genomes at all. This provides near conclusive evidence that
the organisms with these genomes are not truly in the sample, but are merely stealing reads from the genome of the
organism that is there by having regions of identical DNA. For this reason it can be smart to set a minimum MapQ
score of 2 to avoid mis-mapping, but at the same time, look at the difference in the number of reads mapping to the
correct genome when the MapQ filter is used (compare the y-axis in the first and second figure)- 85% of the reads are
filtered out. Using MapQ filters is a matter of debate depending on your specific use-case.

The data above can also be used to evaluate the most stringent threshold that can be used for dereplication. With 190bp
reads (used in the figure above), we can see that read stealing approaches 0 at ~98% ANI. We can also plug this into
the formula above to see that there is a ~2% change of genomes that are 98% ANI from each other sharing a 190bp
identical stretch of DNA (0.98 ^ 190 = 0.02). This is how we arrived at our recommended minimum of 98%
ANI. However it is important to note that longer reads change the formula and differences between genomes are not
uniformly spread across the genome. This is a complicated question and 98% ANI is just a good rule of thumb.

A symptom of having a Genome database in which genomes are too similar to one another is detecting lots of closely
related organisms at similar abundance levels in samples.

b) Ensure that genomes aren’t too distinct from one another.

Note: When representative genomes are too distinct from the sample population they can have trouble with read
mapping. The exact level of how similar genomes need to be depends on a number of factors, but a having a minimum
of 95% ANI between all genomes in the genome database (representing species-level dereplication) is a good
rule of thumb.

Genomes need to be similar enough to the population being mapped that they can properly recruit reads. If one
were to generate a Genome database using an ANI threshold of 85% ANI, for example, implicit in that choice is the
requirement that organisms which share 85% ANI to a representative genome will have their reads mapped to that
genome. This begs the question- how similar do reads have to be to a genome for bowtie2 to map them? The answer
is “it’s complicated”:

14 Chapter 1. Contents

inStrain, Release 1.0.0

In the above example we generated synthetic reads that have a mean of 90% ANI to the reference genome. We then
mapped these reads back to the reference genome and measured the ANI of mapped reads. Critically, the density
of read ANI is not centered around 90% ANI, as it would be if all reads mapped equally well. The peak is instead
centered at ~91% ANI, with a longer tail going left than right. This means that reads which have <92% ANI to the
reference genome sometimes don’t map at all. Sometimes they do map, however, as we see some read pairs mapping
that have ~88% ANI. The reason for this pattern is because bowtie2 doesn’t have a stringent ANI cutoff, it just
maps whatever read-pairs it can. Where the SNPs are along the read, whether they’re in the seed sequence that
bowtie2 uses, and other random things probably determine whether a low-ANI read pair maps or not. Thus, while
bowtie2 can map reads that are up to 86% ANI with the reference genome, 92% seems to be a reasonable minimum
based on this graph.

However, this does not mean that a representative genome that has 92% ANI to an organism of interest will properly
recruit all it’s reads. ANI is calculated as a genome-wide average, and some regions will have more mutations than
others. This is why the figure above has a wide distribution. Further, genomes that share 92% ANI have diverged from
each other for a very long time, and likely have undergone changes in gene content as well. Recent studies have shown
that organisms of the same species usually share >= 95% ANI, and that organisms of the same species share much
more gene content than organisms from different species (Olm mSystems 2020). In sections below we also show that
a buffer of ~3% ANI is needed to account for genomic difference heterogeneity, meaning that genomes dereplciated
at 95% should be able to recruit reads at 92% ANI (the minimum for bowtie2). Thus for a number of reasons 95%
ANI is a good minimum ANI threshold for establishing genome databases.

A symptom of having a Genome database in which genomes are too distinct from one another is genomes having low
mean read ANI and breadth, and having an overall low percentage of reads mapping.

c) Ensure that all microbes in a sample have an appropriate representative genome.

Populations with appropriate representative genomes will be most accurately profiled, and populations that do not have
a representative genome in the genome database will be invisible. Using a combination of de novo assembly and
integration with public databases can result in genome databases that are both accurate and comprehensive.
Instructions for how to do this are available in the Tutorial and User Manual. A great way to determine how complete
your Genome database is is to calculate the percentage of reads that map to genomes in your database. The higher this
percentage, the better (expect ~20-40% for soil, 60-80% for human microbiome, and 90%+ for simple, well defined
communities).

1.3. Important concepts 15

https://msystems.asm.org/content/5/1/e00731-19

inStrain, Release 1.0.0

1.3.5 5. Handling and reducing mis-mapping reads

As discussed above, a major aspect of using and establishing Genome databases with inStrain is reducing the number
of reads that map to the wrong genome. When metagenomic sequencing is performed on a community, reads are
generated from each population in that community. The goal of read mapping is to assign each read to the genome
representing the population from which the read originated. When a read maps to a genome that does not represent
the population from which the read originated, it is a mis-mapped read. Read mis-mapping can happen when a read
maps equally well to multiple genomes (and is then randomly assigned to one or the other) or when a read from a
distantly-related population maps to an inappropriate genome. Read mis-mapping can be reduced using a number of
different techniques as discussed below.

Reducing read mis-mapping with competitive mapping

Competitive mapping is when reads are mapped to multiple genomes simultaneously. When we establish and map to a
Genome database we are performing competitive mapping. When bowtie2 maps reads, by default, it only maps reads
to a single location. That means that if a read maps at 98% ANI to one genome, and 99% ANI to another genome, it
will place the read at the position with 99% ANI. If the read only maps to one scaffold at 98% ANI, however, bowtie2
will place the read there. Thus, by including more reference genome sequences when performing the mapping, reads
will end up mapping more accurately overall. Ensuring that you have the most comprehensive genome set possible is
a great way to reduce read mis-mapping via competitive mapping.

Reducing read mis-mapping by adjusting min_read_ani

InStrain calculates the ANI between all read-pairs and the genomes they map to. The inStrain profile parameter -l
/ --min_read_ani dictates the minimum ANI a read pair can have; all pairs below this threshold are discarded.
Adjusting this parameter can ensure that distantly related reads don’t map, but setting this parameter to be too stringent
will reduce the ability of a genome to recruit reads with genuine variation.

For the figure above synthetic read pairs were generated to be 98% ANI to a random E. coli genome, reads were
mapped back to that genome, and the distribution of ANI values of mapped reads was plotted. Most read pairs have
98%, as expected, but there is a wide distribution of read ANI values. This is because differences between reads and
genomes are not evenly spread along the genome, a fact that is even more true when you consider that real genomes
likely have even more heterogeneity in where SNPs occur than this synthetic example. You really don’t want reads
to fail to map to heterogeneous areas of the genome, because those areas with more SNPs are potentially the most
interesting. Based on the figure above and some other confusing tests that aren’t included in this documentation, it
seems that the minimum read pair ANI should be 2-3% lower than the actual difference between the reads and
the genome to account for genomic heterogeneity. Thus a --min_read_ani of 92% should be used when reads
are expected to map to genomes that are 95% ANI away, for example when using Species representative genomes.

16 Chapter 1. Contents

inStrain, Release 1.0.0

Warning: The inStrain default is 95% minimum read pair ANI, which is ideal in the case that you’ve assembled
your reference genome from the sample itself. If you plan on using inStrain to map reads to a Genome database
of Species representative genome‘s, you should lower the minimum read-pair ANI to ~92% (note that using the
‘–database_mode‘‘ flag automatically adjusts --min_read_ani to 0.92)

Reducing read mis-mapping by adjusting MapQ

mapQ score‘s are numbers that describe how well a read maps to a genome. InStrain is able to set a minimum read-pair
mapQ score using the parameter ‘–min_mapq‘‘. MapQ scores in general are confusing, without consistent rules on
how they’re calculated using different mapping programs, but the values 0-2 have special meaning. If a read maps
equally well to multiple positions it is given a mapQ score of 1 or 2. Thus by setting --min_mapq to 2, you can
remove all reads that map equally well to multiple positions (multi-mapped read). Remember that with competitive
mapping a read that maps equally well to multiple positions will be randomly assigned to one, giving that read a 50%
chance of being mis-mapped.

Whether or not you should set --min_mapq to 2 is a difficult decision. On one hand these reads have a high
probability of being mis-mapped, which is not ideal, but on the other hand doing this mapQ filtering can result in
filtering out lots of reads (see figures in the above section “Establishing and evaluating genome databases”). One way
of thinking about this is by imagining two genomes A and B that are very distinct from one another but share an
identical transposon. If the population represented by genome A and not genome B is present in a sample, without
mapQ filtering you’ll see genome A having a breadth of 100% and genome B having a breadth of ~1%. If genome A
is at 100X coverage you’ll see the coverage across most of the genome at 100x, and at the transposon it will be at 50x.
Genome B will have 0x coverage across most of the genome, and the transposon will be at 50x coverage. The benefit
of this scenario is that we are still able detect that genome A has the transposon; the downside is that it that genome B
is erroneously detected has having a transposon present in the sample (however when using recommended threshold
of 50% breadth to determine detection genome B will still correctly be identified as not being present in the sample).
Performing mapQ filtering on the above situation will result in genome A having a breadth of 99%, 0x coverage at the
transposon, and no reads mapping to genome B. The benefit of this scenario is that we properly detect that no reads
are mapping to genome B; the downside is that we incorrectly think that genome A does not have a transposon in this
sample.

Note: In conclusion, filtering reads by mapQ score is not ideal for a number of reasons. It is best to instead reduce
the number of multi-mapped reads using the advice in the sections above to make it so --min_mapq filtering isn’t
necessary.

1.3.6 6. Detecting organisms in metagenomic data.

Note: Mis-mapping can fool abundance-based presence/absence thresholds. We recommend using a 50% breadth
threshold to determine presence/absence instead.

A critical first step in metagenomic analysis is determining which Representative genomes are “present” or “absent”
(and therefore the microbial populations they represent as well). This is actually more complex than meets the eye,
mostly due to multi-mapped reads and mismapped reads. Details on these phenomena are discussed above, but the
upshot is that just because a genome has reads mapping to it does not mean that that genome is actually present
in a sample.

Many studies determine presence/absence based on metrics like coverage or relative abundance. This isn’t great
though, since there can easily be substantial numbers of mis-mapped reads. There are countless examples of a genome
being detected at 100x coverage and 2% relative abundance, but when looking at the mapping it is discovered that all
reads are mapped to a single prophage on the genome. The problem with these metrics is that they are genome-wide

1.3. Important concepts 17

inStrain, Release 1.0.0

averages, so they cannot account for cases where substantial numbers of reads are map to a small region of the genome.
Most would agree that detecting solely a prophage or transposon on a genome should not count as that genome being
“present”, so we need metrics beyond coverage and 2% relative abundance to determine presence / absence. See
Benchmarks for more real-world examples of this phenomena.

A great metric for determining presence/absence is breadth, the percentage of a genome that’s covered by at least one
read. Using breadth to determine presence/absence allows the user to account for the problems above. Deciding on
an appropriate breadth threshold requires the user to answer the question “How much of the genome do I need to have
detected in a sample before I am confident that it’s actually present”? The answer to this question depends on the
particular study details and questions, but we can use data to help us decide on a rational breadth cutoff.

The figure above shows the expected genome overlap between genomes of various ANI values from different environ-
ments (adapted from “Consistent metagenome-derived metrics verify and define bacterial species boundaries”). As
you can see, genomes that share >95% ANI tend to share ~75% of their genome content. Therefore, using a breadth
detection cutoff of somewhere around 50-75% seems to be reasonable when using Species representative genome s.
In my experience using a 50% breadth cutoff does a great job of ensuring that genomes are actually present
when you say they are, and leads to very few false positives. It’s exceedingly rare for mis-mapping to lead to >50%
genome breadth. See Benchmarks for real-world examples of the 50% breadth threshold in action.

A caveat of using a breadth threshold is that it requires thousands of reads to map to a genome for it to be considered
present. This makes it less ideal for samples with low sequencing depth. To determine the coverage needed to
detect a genome at some breadth, we performed an experiment based on synthetic E. coli and C. albicans reads). By
generating reads, subsetting them to a number of different total read numbers, and mapping them back to the genome,
we generated the following figure

This figure allows us to visually see the relationship between coverage and breadth when reads are mapped randomly
across the genome. To achieve a 50% breadth an organism needs to have just under 1x coverage. At over 6x coverage,
all organisms should have ~100% breadth. This data also allowed us to fit a curve to calculate the following formula:

𝑏𝑟𝑒𝑎𝑑𝑡ℎ = 1− 𝑒−0.883*𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

Applying this formula allows inStrain to calculate and report expected breadth for a given coverage value. Effective
use of expected breadth can allow users to lower their breadth thresholds and still have confidence in determin-
ing presence/absence. Imagine that you detect an organism at 10x coverage and 85% breadth. The expected breadth
at 10x coverage is 100%, but you only have 85% breadth. This means that 15% of your genome is likely not in the
reads set, and that your representative genome has genome content that is 15% different from the organism in your

18 Chapter 1. Contents

https://www.biorxiv.org/content/early/2019/05/24/647511.full.pdf

inStrain, Release 1.0.0

sample. Now imagine that you detect an organism at 3x coverage with 85% breadth. The expected breadth and actual
breadth are approximately the same now, meaning that reads and randomly aligning to all parts of the genome and you
likely have a very dialed in representative genome. Now imagine you detect organism A with 10% breadth and 0.1x
coverage, and organism B with 10% breadth and 10x coverage. Both organisms have the same breadth, but organism A
is much more likely to be actually present in your sample. That’s because while few reads overall are mapping, they’re
mapping all across the genome in a random way (you know this because breadth is about equal to expected breadth),
which is indicative of a true low abundance population. Organism B, however, should be abundant enough for reads
to map all over the genome (expected breadth is 100%), but reads are only mapping to 10% of it. This indicates that
no matter how deeply you sequence you will not see the rest of organism B’s genome, and the 10% of it that you are
seeing is likely due to mis-mapping.

Note: Theoretical models have determined breadth to be: 1 - exp(-coverage) (Lander and Waterman (1988)), slightly
different from the empirical derivation presented here and used in inStrain. More information on this subject can be
found at this technical note from Illumina.

1.3.7 7. Strain-level comparisons and popANI.

InStrain is able to perform detailed, accurate, microdiversity-aware strain-level comparisons between organisms de-
tected in multiple metagenomic samples. The is done using the command inStrain compare on multiple samples
that have been profiled using the command inStrain profile, and technical details on how this is done is avail-
able in the User Manual.

To understand why “microdiversity-aware” genomic comparisons are important, consider the fact that all natural
microbial populations have some level of genomic heterogeneity present within them.

The image above incorporates data from Zhao et. al. 2019 and Zanini et. al. 2015 (left and middle phylogenetic trees).
In each case different colors represent different individuals, and each leaf represents an individual isolate. You can see
from these data that although each individual has a distinct microbial population, there is substantial diversity within
each individual as well (referred to as intraspecific genetic variation (within species), intrapatient genetic variation
(within patient), or microdiversity). Knowledge of this fact leads to the question- how does one accurately compare
populations that have intraspecific genetic variation? Some common approaches include comparing the “average”
genome in each sample (the consensus genome) or comparing a number of individual isolates. See Benchmarks for

1.3. Important concepts 19

https://doi.org/10.1016/0888-7543(88)90007-9
https://www.illumina.com/documents/products/technotes/technote_coverage_calculation.pdf
https://doi.org/10.1016/j.chom.2019.03.007
https://doi.org/10.7554/eLife.11282

inStrain, Release 1.0.0

some data on how well these approaches hold up.

InStrain performs microdiversity-aware comparisons using the metric popANI, depicted above, which is also reported
alongside the more common consensus-based ANI metric conANI. The calculation of popANI and conANI is not
complicated once you understand it (really), but describing can be tricky, and the simplest way of describing it is with
examples like those displayed above.

While not depicted in the above figure, the first step of calculating conANI and popANI is identifying all positions along
the genome in which both samples have 5x coverage. This number is reported as the compared_bases_count,
and it describes the number of base-pairs (bp) that are able to be compared. Next, inStrain goes through each one
of these comparable base-pairs and determines if there is a conANI substitution at that position and/or if there is a
popANI substitution at that position. The left half of the above figure describes the conditions that will lead to popANI
and conANI substitutions. If both samples have the same major allele (e.g. the most common base at that position
is the same in both samples), no substitutions will be called. If samples have different major alleles (e.g. the most
common base in sample 1 is A, and the most common base in sample 2 is C), a conANI substitution will be called. If
there are no alleles that are shared between the two samples, major or minor, a popANI substitution will be called.
The calculations that determine whether or not a base is considered “present” as a minor allele in a sample (vs. it just
being a sequencing error) are discussed in the User Manual.

On the right side of the above figure we see several examples of this in action. In the top row there are no alleles that
are the same in both samples, therefore the site will count as both a conANI SNP and a popANI SNP. In the second
row the consensus allele is different in both samples (its G in the sample on the left and T in the sample on the right),
so a conANI SNP will be called. However the samples DO share an allele (T is present in both samples), so this will
NOT be considered a popANI substitution. In the third row both samples have the same consensus allele and share

20 Chapter 1. Contents

inStrain, Release 1.0.0

alleles, so no substitutions are called. In the last row the samples have different consensus alleles (G on the left and
T on the right), so a conANI substitution will be called, but there is allele overlap between the samples (both samples
have G and T) so a popANI substitution will NOT be called.

Once we have the compared_bases_count, number of conANI SNPs, and number of popANI SNPs, calculation
of conANI and popANI is trivial.

𝑝𝑜𝑝𝐴𝑁𝐼 = (𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑𝑏𝑎𝑠𝑒𝑠𝑐𝑜𝑢𝑛𝑡− 𝑝𝑜𝑝𝐴𝑁𝐼𝑠𝑛𝑝𝑠)/𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑𝑏𝑎𝑠𝑒𝑠𝑐𝑜𝑢𝑛𝑡

𝑐𝑜𝑛𝐴𝑁𝐼 = (𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑𝑏𝑎𝑠𝑒𝑠𝑐𝑜𝑢𝑛𝑡− 𝑐𝑜𝑛𝐴𝑁𝐼𝑠𝑛𝑝𝑠)/𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑𝑏𝑎𝑠𝑒𝑠𝑐𝑜𝑢𝑛𝑡

Note: Notice that compared_bases_count is integral to conANI and popANI calculations. It essentially de-
termines the “denominator” in the calculations, as it let’s you know how bases were compared in the calculation.
Attempting to calculate conANI and popANI using SNP-calling data from other programs will likely leave out this
critical information. Remember- compared_bases_count is a measure of how many bases have at least 5x cov-
erage in BOTH samples. Consideration of compared_bases_count is critical to ensure that popANI isn’t high
simply because one or both sample’s doesn’t have high enough coverage to detect SNPs

1.3.8 8. Thresholds for determining “same” vs. “different” strains.

Once inStrain performs it’s strain-level comparisons, one must decide on some threshold to define microbes as being
the “same” or “different” strains. The figure above illustrates some common ANI values used for defining various
relationships between microbes (top left), some previously reported rates of in situ microbial evolution (bottom left),
and estimates of divergence times for various ANI thresholds (top left). On the right is an analogy using canine
taxonomy.

The figure above illustrates how loose ANI thresholds can be used to define relatively broad groups of organisms, for
example the genus Canis or the species Canis Familiaris. Sub-species taxonomic levels, referred to as strains in the
microbe world and breeds in the dog world, describe groups of organisms within particular species. Strain definitions
in the microbial world are not consistent, but some example strain ANI thresholds are shown. There is still generally
some variation within strains, however. This is exemplified by the fact that while dogs of the same breed are similar
to one another, they’re not identical to one another. Similarly, microbes of the same strain based on a 99% ANI
definition can have diverged for roughly 44,000 years (based on the in situ mutation rate in bold in the bottom left).
Clearly microbes that have diverged for tens of thousands of years are not identical to one another. Thus if we want
to know whether samples are linked by a recent microbial transmission event, we need an extremely stringent
definition of “same” that is beyond the typical strain level. Note that the dogs in the bottom right are clones that
truly do represent identical dogs..

1.3. Important concepts 21

https://www.nytimes.com/2018/03/02/style/barbra-streisand-cloned-her-dog.html
https://www.nytimes.com/2018/03/02/style/barbra-streisand-cloned-her-dog.html

inStrain, Release 1.0.0

To identify microbes that are linked by a recent transmission event we want the most stringent ANI threshold possible.
99.9999% ANI, for example, represents less than 10 years of divergence time and could be a useful metric. Metage-
nomic sequencing is messy, however, and when working with this level of stringency we need to think about our limit
of detection. The Benchmarks section contains data on the limit of detection for inStrain using defined microbial
communities (see section “Benchmark with true microbial communities”) The conclusion is that 99.999% popANI
is a good, highly stringent definition for identical strains that is within the limit of detection for metagenomic
analysis.. In addition to popANI, one must also consider the fraction of the genome that was at sufficient coverage
in both samples being compared. This value (reported as percent_genome_compared) is more of a judgement
call, but we recommend requiring a minimum of 25% or 50% percent_genome_compared in addition to the
popANI threshold.

Note: In conclusion, organisms in different samples that are linked by a recent transmission event should have
99.999% popANI and 50% percent_genome_compared

1.3.9 9. Importance of representative genomes when calculating popANI

InStrain strain-level comparisons are based on mappings to representative genomes. In order for this to work well,
however reads with variation must be able to map to the representative genomes within the ‘‘–min_read_ani‘‘
threshold. Note that inStrain compare will use the --min_read_ani selected during the inStrain
profile commands by default.

Below are a series of plots generated from synthetic data demonstrating this fact. In these plots a reference genome
was downloaded from NCBI, mutated to a series of known ANI values, synthetic reads were generated from each of
these mutated genomes, and synthetic reads were then mapped back to the original genome.

In the above plot the --min_read_ani is set to 95%. As you can see, when the true ANI value between the

22 Chapter 1. Contents

inStrain, Release 1.0.0

genomes is below 98%, popANI values reported by inStrain are not accurate. The reason that this happens is because
reads with genuine variation are being filtered out by inStrain, leaving only the reads without variation, which arti-
ficially increases the reported popANI values. In sections above we demonstrated that ‘‘–min_read_ani‘‘ should
be ~3% looser than the population you’d like to recruit reads from; the same rule applies here. If you’d like
to compare organisms that have a popANI of 95%, your --min_read_ani needs to be 92%. Here we have a
--min_read_ani of 95%, so we can detect accurate popANI values of 98% or above (as shown in the above
figure). This phenomena is explored further in the following way.

The above figure displays the percent_genome_compared for each of the comparisons in the first figure in this
section. As expected, when comparing genomes of low ANI values with a read-pair ANI threshold of 95%, only a
small amount of the genome is actually being compared. This genome fraction represents the spaces of the genome
that happen to be the most similar, and thus the inStrain calculated ANI value is overestimated. The conclusion here
is that in order to get an accurate ANI value, you need to set your ‘‘–min_read_ani‘‘ at least 3% below the ANI
value that you wish to detect.

1.3.10 10. Using inStrain for gene-based functional analysis

The above figure shows a visual representation of k-mer based metagenomic analysis, gene-based metagenomic analy-
sis, and Representative genome based metagenomic analysis. As you can see, among the advantages of genome-based
metagenomic analysis is the ability to perform context-aware functional profiling.

InStrain does not have the ability to annotate genes. However, inStrain does have the ability to deeply profile all genes
in a sample, including analysis of coverage, coverage variation, gene pN/pS, nucleotide diversity, individual SNVs, etc.
This gene-level information can then be combined with gene annotations to perform robust functional analysis. Any
database can be used for this type of analysis, including pFam for protein domain annotations, ABRicate for antibiotic
resistance gene annotation, UniRef100 for general protein annotation, and dbCAN for CAZyme annotation.

1.3. Important concepts 23

http://pfam.xfam.org/
https://github.com/tseemann/abricate
https://www.uniprot.org/help/uniref
http://bcb.unl.edu/dbCAN/

inStrain, Release 1.0.0

24 Chapter 1. Contents

inStrain, Release 1.0.0

For examples of inStrain-based functional annotation in action, see Table 1 and Figure 6 of the inStrain publication
and this GitHub repo focused on COVID-19 population genomics analysis

1.3.11 11. Reducing inStrain resource usage

Note: When mapping to a Genome database with more than a handful of genomes make sure to use the flag
--database_mode

The two computational resources to consider when running inStrain are the number of processes given (-p) and the
amount of RAM on the computer (usually not adjustable unless using cloud-based computing).

Using inStrain v1.3.3, running inStrain on a .bam file of moderate size (1 Gbp or less) will generally take less than an
hour with 6 cores, and use about 8Gb of RAM. InStrain is designed to handle large .bam files as well. Running a huge
.bam file (30 Gbp) with 32 cores, for example, will take ~2 hours and use about 128Gb of RAM. The more processes
you give inStrain the faster it will run, but also the more RAM it will use.

In the log folder InStrain provides a lot of information on where it’s spending it’s time and where it’s using it’s RAM.

To reduce RAM usage, you can try the following things:

• Use the --skip_mm flag. This won’t profile things on the mm level, and will treat every read pair as perfectly
mapped. This is perfectly fine for most applications

• Make sure and use the --database_mode flag when mapping to genome databases. This will do a couple
of things to try and reduce RAM usage

• Use less processes (-p). Using more processes will make inStrain run faster, but it will also use more RAM
while doing so

1.4 Tutorial

The above figure provides a conceptual overview of the steps involved when running inStrain. Step 1 is generating
sequencing reads, step 2 is mapping those sequencing reads to a Genome database, step 3 is profiling the mapping
with inStrain profile, step 4 is comparing inStrian profiles using inStrain compare.

1.4.1 Quick Start

The two main operations of inStrain are compare and profile.

1.4. Tutorial 25

https://www.biorxiv.org/content/10.1101/2020.01.22.915579v1
https://github.com/MrOlm/covid19_population_genomics

inStrain, Release 1.0.0

Profile

InStrain profile takes as input a fasta file and a bam file and runs a series of steps to characterize the nucleotide
diversity, SNSs and SNVs, linkage, etc.. If one provides a scaffold-to-bin file it will calculate genome-level metrics,
and if one provides a genes file it will calculate gene level metrics.

The most basic inStrain profile command has this form:

$ inStrain profile .bam_file .fasta_file -o IS_output_name

Compare

InStrain compare takes as input multiple inStrain profile objects (generated using the command above)
and performs strain-level comparisons. Each inStrain profile object used by InStrain compare must be
made from reads mapped to the same fasta file.

The most basic inStrain compare command looks like this:

$ inStrain compare -i IS_output_1 IS_output_2 IS_output_3

Other

There are a number of other operations that inStrain can perform as well, although these generally perform more niche
tasks. Check the program help (inStrain -h) to see a full list of the available operations

$ inStrain -h

...::: inStrain v1.4.0 :::...

Matt Olm and Alex Crits-Christoph. MIT License. Banfield Lab, UC Berkeley. 2019

Choose one of the operations below for more detailed help. See https://instrain.
→˓readthedocs.io for documentation.
Example: inStrain profile -h

Workflows:
profile -> Create an inStrain profile (microdiversity analysis) from a

→˓mapping.
compare -> Compare multiple inStrain profiles (popANI, coverage_overlap,

→˓etc.)

Single operations:
profile_genes -> Calculate gene-level metrics on an inStrain profile

→˓[DEPRECATED; PROVIDE GENES TO profile]
genome_wide -> Calculate genome-level metrics on an inStrain profile

→˓[DEPRECATED; PROVIDE .stb FILES TO profile / compare]
quick_profile -> Quickly calculate coverage and breadth of a mapping using

→˓coverM
filter_reads -> Commands related to filtering reads from .bam files
plot -> Make figures from the results of "profile" or "compare"
other -> Other miscellaneous operations

See also:

Installation To get started using the program

26 Chapter 1. Contents

inStrain, Release 1.0.0

User Manual For descriptions of what the modules can do and information on how to prepare data for inStrain

Expected output To view example output and how to interpret it

1.4.2 Example inStrain commands

Running inStrain profile on a single genome

inStrain profile mappingfile.bam genomefile.fasta -o outputlocation.IS -p 6 -
→˓g genesfile.fasta

Running inStrain profile on a large set of genomes

inStrain profile mappingfile.bam genomesfile.fasta -o outputlocation.IS -p 6
→˓-g genesfile.fasta -s scaffoldtobin.stb --database_mode

Running inStrain compare on a large set of genomes

inStrain compare -i genomefile-vs-sample1.IS/ genomefile-vs-sample2.IS/ -o
→˓genomefile.IS.COMPARE -p 6 -s scaffoldtobin.stb --database_mode

1.4.3 Tutorials

The following tutorials give step-by-step instructions on how to run inStrain a couple of different ways. The main
difference between these tutorials is in how the Genome database used for inStrain analysis is generated. The user to
inStrain decides on their own what genomes should be used for analysis, and there are a couple of broad options as
depicted in the figure below.

Tutorial #1 uses test data that comes packaged with the inStrain source code to go through the basic steps of the
program. It also describes how you can run using genomes that you have generated on your own.

Tutorial #2 describes how to run inStrain using an existing, public genome database. This way of running inStrain
avoids the need for metagenomic assembly and genome binning.

Tutorial #3 describes how to combine custom genomes with an existing genome database. This allows users to include
both sample-specific representative genomes and an existing genome database, and allows for comprehensive, accurate
analysis.

1.4.4 Tutorial #1) Running inStrain on provided test data

The following tutorial goes through an example run of inStrain. You can follow along with your own data, or use a
small set of reads that are included in the inStrain source code for testing. They can be found in the folder test/
test_data/ of your install folder, or can be downloaded from the inStrain source code at this link on GitHub. The

1.4. Tutorial 27

https://github.com/MrOlm/inStrain/tree/master/test/test_data

inStrain, Release 1.0.0

files that we’ll use for this tutorial are the forward and reverse metagenomic reads (N5_271_010G1.R1.fastq.gz
and N5_271_010G1.R2.fastq.gz) and a .fasta file to map to (N5_271_010G1_scaffold_min1000.fa).
In case you’re curious, these metagenomic reads come from a premature infant fecal sample.

Preparing input files

After downloading the genome file that you would like to profile (the fasta file) and at least one set of paired reads, the
first thing to do is to map the reads to the .fasta file in order to generate a bam file.

When this mapping is performed it is important that you map to all genomes simultaneously (see Important concepts
for why this is important). This involves combining all of the genomes that you’d like to map into a single .fasta file.
In our case our .fasta file already has all of the genomes that we’d like to profile within it, but if you did want to profile
a number of different genomes, you could combine them using a command like this

$ cat raw_data/S2_002_005G1_phage_Clostridioides_difficile.fasta raw_data/S2_018_
→˓020G1_bacteria_Clostridioides_difficile.fasta > allGenomes_v1.fasta

When we do this we also need to generate a file to let inStrain know which scaffolds came from which genomes. We
can do this by giving inStrain a list of the .fasta files that went into making the concatenated .fasta file, or we can make
a scaffold-to-bin file file, which lists the genome assignment of each scaffold in a tab-delimited file. This is how to do
the later method using the parse_stb.py script that comes with the program dRep (Installed with the command pip
install drep --upgrade)

$ parse_stb.py --reverse -f raw_data/S2_002_005G1_phage_Clostridioides_difficile.
→˓fasta raw_data/S2_018_020G1_bacteria_Clostridioides_difficile.fasta -o genomes.stb

Next we must map our reads to this fasta file to create bam files. In this tutorial we will use the mapping program
Bowtie 2

$ mkdir bt2

$ bowtie2-build ~/Programs/inStrain/test/test_data/N5_271_010G1_scaffold_min1000.fa
→˓bt2/N5_271_010G1_scaffold_min1000.fa

$ bowtie2 -p 6 -x bt2/N5_271_010G1_scaffold_min1000.fa -1 ~/Programs/inStrain/test/
→˓test_data/N5_271_010G1.R1.fastq.gz -2 ~/Programs/inStrain/test/test_data/N5_271_
→˓010G1.R2.fastq.gz > N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.sam

At this point we have generated a .sam file, the precursor to .bam files. Lets make sure it’s there and not empty

$ ls -lht

total 34944
-rw-r--r-- 1 mattolm staff 16M Jan 23 11:56 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.sam
drwxr-xr-x 8 mattolm staff 256B Jan 23 11:54 bt2/

Perfect. At this point we could convert the .sam file to a sorted and indexed .bam file using samtools, but since inStrain
can do that for us automatically we won’t bother.

If we want inStrain to do gene-level profiling we need to give it a list of genes to profile. Note - this is an optional
step that is not required for inStrain to work in general, but without this you will not get gene-level profiles

We will profile our genes using the program prodigal, which can be run using the following example command

$ prodigal -i ~/Programs/inStrain/test/test_data/N5_271_010G1_scaffold_min1000.fa -d
→˓N5_271_010G1_scaffold_min1000.fa.genes.fna -a N5_271_010G1_scaffold_min1000.fa.
→˓genes.faa (continues on next page)

28 Chapter 1. Contents

https://www.ncbi.nlm.nih.gov/biosample/?term=N5_271_010G1
https://github.com/MrOlm/drep/blob/master/helper_scripts/parse_stb.py
http://www.htslib.org/

inStrain, Release 1.0.0

(continued from previous page)

Running inStrain profile

Now that we’ve gotten everything set up it’s time to run inStrain. To see all of the options, run

$ inStrain profile -h

A long list of arguments and options will show up. For more details on what these do, see User Manual. The only
arguments that are absolutely required, however, are a .sam or .bam mapping file, and the .fasta file that the mapping
file is mapped to.

Note: In this case we’re going to have inStrain profile the mapping, call genes, make the results genome wide,
and plot the results all in one command. This is the recommended way to do things for the most computational
efficiency. The other, not recommended way would be to run these all as separate steps (using the subcommands
inStrain profile, inStrain profile_genes, inStrain genome_wide, and inStrain plot).
See User Manual for more information.

Using all of the files we generated above, here is going to be our inStrain command

$ inStrain profile N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.sam ~/Programs/
→˓inStrain/test/test_data/N5_271_010G1_scaffold_min1000.fa -o N5_271_010G1_scaffold_
→˓min1000.fa-vs-N5_271_010G1.IS -p 6 -g N5_271_010G1_scaffold_min1000.fa.genes.fna -s
→˓~/Programs/inStrain/test/test_data/N5_271_010G1.maxbin2.stb

You should see the following as inStrain runs (should only take a few minutes)

You gave me a sam- I'm going to make it a .bam now
Converting N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.sam to N5_271_010G1_
→˓scaffold_min1000.fa-vs-N5_271_010G1.ba
m
samtools view -S -b N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.sam > N5_271_
→˓010G1_scaffold_min1000.fa-vs-N5_271_
010G1.bam
sorting N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.bam
samtools sort N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.bam -o N5_271_010G1_
→˓scaffold_min1000.fa-vs-N5_271_010G1
.sorted.bam -@ 6
[bam_sort_core] merging from 0 files and 6 in-memory blocks...
Indexing N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.sorted.bam
samtools index N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.sorted.bam N5_271_
→˓010G1_scaffold_min1000.fa-vs-N5_271_
010G1.sorted.bam.bai -@ 6

..:: inStrain profile Step 1. Filter reads ::..

Filtering reads: 100%|| 178/178 [00:02<00:00, 70.99it/s]
37.3% of reads were removed during filtering
1,727 read pairs remain (0.0004472 Gbp)

.:: inStrain profile Step 2. Profile scaffolds ::..

(continues on next page)

1.4. Tutorial 29

inStrain, Release 1.0.0

(continued from previous page)

Profiling splits: 100%|| 7/7 [00:05<00:00, 1.21it/s]
Merging splits and profiling genes: 100%|| 7/7 [00:08<00:00, 1.18s/it]

.:: inStrain profile Step 4. Make genome-wide ::..

Scaffold to bin was made using .stb file
85.66% of scaffolds have a genome
93.82% of scaffolds have a genome
99.30% of scaffolds have a genome

.:: inStrain profile Step 5. Generate plots ::..

making plots 1, 2, 3, 4, 5, 6, 7, 8, 9
Plotting plot 1
Plotting plot 2
85.66% of scaffolds have a genome
Plotting plot 3
57.37% of scaffolds have a genome
Plotting plot 4
97.33% of scaffolds have a genome
Plotting plot 5
Plotting plot 6
Plotting plot 7
97.33% of scaffolds have a genome
Plotting plot 8
94.32% of scaffolds have a genome
Plotting plot 9
$$

..:: inStrain profile finished ::..

Output tables........ N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.IS/output/
Figures.............. N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.IS/figures/
Logging.............. N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.IS/log/

See documentation for output descriptions - https://instrain.readthedocs.io/en/latest/

$$

The last but of the output shows you where the plots and figures have been made. Here’s a list of the files that you
should see

$ ls -lht N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.IS/output/
total 91K
-rw-rw-r-- 1 mattolm infantgi 35K Jan 15 10:10 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_SNVs.tsv
-rw-rw-r-- 1 mattolm infantgi 1.2K Jan 15 10:10 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_genome_info.tsv
-rw-rw-r-- 1 mattolm infantgi 23K Jan 15 10:10 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_mapping_info.tsv
-rw-rw-r-- 1 mattolm infantgi 92K Jan 15 10:10 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_gene_info.tsv
-rw-rw-r-- 1 mattolm infantgi 15K Jan 15 10:10 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_linkage.tsv

(continues on next page)

30 Chapter 1. Contents

inStrain, Release 1.0.0

(continued from previous page)

-rw-rw-r-- 1 mattolm infantgi 30K Jan 15 10:10 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_scaffold_info.tsv

$ ls -lht N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.IS/figures/
total 3.5M
-rw-rw-r-- 1 mattolm infantgi 386K Jan 15 10:10 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_GeneHistogram_plot.pdf
-rw-rw-r-- 1 mattolm infantgi 379K Jan 15 10:10 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_LinkageDecay_types_plot.pdf
-rw-rw-r-- 1 mattolm infantgi 404K Jan 15 10:10 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_ScaffoldInspection_plot.pdf
-rw-rw-r-- 1 mattolm infantgi 375K Jan 15 10:10 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_ReadFiltering_plot.pdf
-rw-rw-r-- 1 mattolm infantgi 378K Jan 15 10:10 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_LinkageDecay_plot.pdf
-rw-rw-r-- 1 mattolm infantgi 377K Jan 15 10:10 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_MajorAllele_frequency_plot.pdf
-rw-rw-r-- 1 mattolm infantgi 375K Jan 15 10:10 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_readANI_distribution.pdf
-rw-rw-r-- 1 mattolm infantgi 400K Jan 15 10:10 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_genomeWide_microdiveristy_metrics.pdf
-rw-rw-r-- 1 mattolm infantgi 376K Jan 15 10:10 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_CoverageAndBreadth_vs_readMismatch.pdf

We have now successfully generated an inStrain profile! For help interpreting the output files, see Expected output

Running inStrain parse_annotations

InStrain parse_annotations creates output files that make it easier to perform functional gene analysis.
One input file is the InStrain profile object, which we just created above, and the other input file is a table of gene
annotations.

You can annotate your genes using whatever gene annotation database you like (depending on your specific project
and questions). The section Gene Annotation in User Manual has instructions for a few databases. In this tutorial let’s
just annotate with KEGG Orthologies (KOs) and Carbohydrate-Active enZYmes (CAZymes).

To do the annotations we’ll need the amino acid sequences of the genes (the file ending in .faa, created using the prodi-
gal command above) even though the gene nucleotide sequences is what we provided to inStrain profile. Following
the section Gene Annotation in User Manual, we’ll then run the following commands

$ exec_annotation -p profiles -k ko_list --cpu 10 --tmp-dir ./tmp -o N5_271_010G1_
→˓scaffold_min1000.fa.genes.faa.KO N5_271_010G1_scaffold_min1000.fa.genes.faa

$ hmmscan --domtblout N5_271_010G1_scaffold_min1000.fa.genes.faa_vs_dbCAN_v11.dm
→˓dbCAN-HMMdb-V11.txt N5_271_010G1_scaffold_min1000.fa.genes.faa > /dev/null ; sh /
→˓hmmscan-parser.sh N5_271_010G1_scaffold_min1000.fa.genes.faa_vs_dbCAN_v11.dm > N5_
→˓271_010G1_scaffold_min1000.fa.genes.faa_vs_dbCAN_v11.dm.ps ; cat N5_271_010G1_
→˓scaffold_min1000.fa.genes.faa_vs_dbCAN_v11.dm.ps | awk '$5<1e-15&&$10>0.35' > N5_
→˓271_010G1_scaffold_min1000.fa.genes.faa_vs_dbCAN_v11.dm.ps.stringent

We’ll now need to use python / R / Excel to parse and re-format the output of these (and any other) annotations. In the
end they need be transformed into a single .csv file with the columns “gene” and “anno”. See User Manual for more
details on the specific formatting requirements. In our case the file, which I called geneAnnotations_v1.csv, should
look like this:

1.4. Tutorial 31

inStrain, Release 1.0.0

Table 1: geneAnnotations_v1.csv
gene anno
N5_271_010G1_scaffold_12_3 K06956
N5_271_010G1_scaffold_14_1 K09890
N5_271_010G1_scaffold_15_2 K07482
N5_271_010G1_scaffold_19_7 K09890
N5_271_010G1_scaffold_25_1 K20386
N5_271_010G1_scaffold_25_1 K15558
N5_271_010G1_scaffold_25_1 K19762
N5_271_010G1_scaffold_25_2 K06864
N5_271_010G1_scaffold_28_3 K07482

Now we can run inStrain parse_annotations with a command like the following

$ inStrain parse_annotations -i N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.IS/ -
→˓o genes_output_v1 -a geneAnnotations_v1.csv

Done! To see what output files you can expect, see Expected output

Running inStrain compare

InStrain compare compares genomes that have been profiled by multiple different metagenomic mappings. To
compare genomes in the sample we just profiled above, we need to generate another bam file of reads from another
sample to the same .fasta file. Provided in the inStrain test_data folder is exactly that- another different set of reads
mapped to the same .fasta file (N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G2.sorted.bam). Let’s run in-
Strain on this to make a new inStrain profile

$ inStrain profile test_data/N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G2.sorted.
→˓bam N5_271_010G1_scaffold_min1000.fa -o N5_271_010G1_scaffold_min1000.fa-vs-N5_271_
→˓010G2.IS -p 6 -g N5_271_010G1_scaffold_min1000.fa.genes.fna -s N5_271_010G1.maxbin2.
→˓stb

To see the help section for inStrain compare run:

$ inStrain compare -h

As above, this will print out a whole list of parameters that can be turned depending on your specific use-case. Im-
portant concepts and User Manual provide some insight into what these parameters do and how to tune them. For the
purposes of this tutorial we’re going to use mostly default parameters, giving us the following command

$ inStrain compare -i N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.IS/ N5_271_
→˓010G1_scaffold_min1000.fa-vs-N5_271_010G2.IS/ -s .N5_271_010G1.maxbin2.stb -p 6 -o
→˓N5_271_010G1_scaffold_min1000.fa.IS.COMPARE

This command should produce the following output

Scaffold to bin was made using .stb file

..:: inStrain compare Step 1. Load data ::..

Loading Profiles into RAM: 100%|| 2/2 [00:00<00:00, 67.45it/s]
158 of 167 scaffolds are in at least 2 samples

(continues on next page)

32 Chapter 1. Contents

https://github.com/MrOlm/inStrain/tree/master/test/test_data
https://github.com/MrOlm/inStrain/blob/master/test/test_data/N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G2.sorted.bam

inStrain, Release 1.0.0

(continued from previous page)

..:: inStrain compare Step 2. Run comparisons ::..

Running group 1 of 1
Comparing scaffolds: 100%|| 158/158 [00:04<00:00, 36.12it/s]

..:: inStrain compare Step 3. Auxiliary processing ::..

..:: inStrain compare Step 4. Store results ::..

making plots 10
Plotting plot 10
/home/mattolm/.pyenv/versions/3.6.10/lib/python3.6/site-packages/inStrain/
→˓plottingUtilities.py:963: UserWarning: FixedFormatter should only be used together
→˓with FixedLocator
axes.set_xticklabels(labels)

/home/mattolm/.pyenv/versions/3.6.10/lib/python3.6/site-packages/inStrain/
→˓plottingUtilities.py:963: UserWarning: FixedFormatter should only be used together
→˓with FixedLocator
axes.set_xticklabels(labels)

Done!
$$

..:: inStrain compare finished ::..

Output tables........ N5_271_010G1_scaffold_min1000.fa.IS.COMPARE/output/
Figures.............. N5_271_010G1_scaffold_min1000.fa.IS.COMPARE/figures/
Logging.............. N5_271_010G1_scaffold_min1000.fa.IS.COMPARE/log/

See documentation for output descriptions - https://instrain.readthedocs.io/en/latest/

$$

As before, the last part of the output shows you where the plots and figures have been made. Here’s a list of the files
that you should see

$ ls -lht N5_271_010G1_scaffold_min1000.fa.IS.COMPARE/output/
total 14K
-rw-rw-r-- 1 mattolm infantgi 28K Jan 15 10:33 N5_271_010G1_scaffold_min1000.fa.IS.
→˓COMPARE_comparisonsTable.tsv
-rw-rw-r-- 1 mattolm infantgi 352 Jan 15 10:33 N5_271_010G1_scaffold_min1000.fa.IS.
→˓COMPARE_strain_clusters.tsv
-rw-rw-r-- 1 mattolm infantgi 554 Jan 15 10:33 N5_271_010G1_scaffold_min1000.fa.IS.
→˓COMPARE_genomeWide_compare.tsv

$ ls -lht N5_271_010G1_scaffold_min1000.fa.IS.COMPARE/figures/
total 393K
-rw-rw-r-- 1 mattolm infantgi 376K Jan 15 10:33 N5_271_010G1_scaffold_min1000.fa.IS.
→˓COMPARE_inStrainCompare_dendrograms.pdf

Success! As before, for help interpreting this output see Expected output .

1.4. Tutorial 33

inStrain, Release 1.0.0

1.4.5 Tutorial #2) Running inStrain using a public genome database

If you don’t want to assemble and bin your metagenomic samples it is also possible to run inStrain using publicly
available reference genomes. Here we will go through a tutorial on how to do this with the UHGG genome collection,
a collection of all microbial species known to exist in the human gut. The steps in this tutorial could be repeated with
any set of genomes though.

Preparing a genome database

Note: The genome database created in this section is available for direct download at the following link - https:
//doi.org/10.5281/zenodo.4441269 . You can download those files directly and skip this section if you would like.
This genome set is based on UHGG version 1 and was created on Jan 14, 2021.

In order to create a genome database we need to download the genomes, create a scaffold-to-bin file, create a genes
file, and merge all genomes into a single fasta file that we can make a bowtie2 mapping index out of. All genomes in
a genome need to database need to be distinct from one another, but not too distinct. See section “Establishing and
evaluating genome databases” in Important concepts for more info.

First we must download the UHGG genomes themselves. The FTP site is here, and metadata on genomes is genomes-
all_metadata.tsv. Let’s download this metadata file using curl:

$ curl http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-gut/v1.0/
→˓genomes-all_metadata.tsv -o genomes-all_metadata.tsv

Now that we have this metadata file we need to download all species representative genomes. There are a number of
ways to do this, but we’re going to do it by parsing the metadata table in unix. Running the following command will
1) identify columns of species representatives, 2) parse the row to determine their FTP location, 3) create and run a
curl command to download the genome:

$ cat genomes-all_metadata.tsv | awk -F "\t" '{if ($17 == $1) print "curl ftp://ftp.
→˓ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-gut/v1.0/uhgg_catalogue/"
→˓substr($18,0,13) "/" $18 "/genome/" $18 ".fna -o UHGG_reps/" $1 ".fna"}' | bash

The following command will let us check and make sure that we downloaded all 4644 genomes:

$ ls UHGG_reps/ | wc -l
4644

Next we need to create a scaffold-to-bin file. This can easily be done using the script parse_stb.py that comes with the
program dRep:

$ parse_stb.py --reverse -f UHGG_reps/* -o UHGG.stb

Next we’ll profile the genes for each genome using Prodigal to create a genes file. This can be done on the concatenated
genome file (created below) or on the individual genomes (as shown in this code chunk). The benefit of the later is that
it allows Prodigal to be run in single genome mode, as opposed to metagenome mode, which can be more accurate:

$ mkdir UHGG_genes

$ cd UHGG_reps/

$ for genome in $(ls *.fna); do echo prodigal -i $genome -o ../UHGG_genes/$genome.
→˓genes -a ../UHGG_genes/$genome.gene.faa -d ../UHGG_genes/$genome.gene.fna -m -p
→˓single; done | parallel -j 6

(continues on next page)

34 Chapter 1. Contents

https://www.nature.com/articles/s41587-020-0603-3
https://doi.org/10.5281/zenodo.4441269
https://doi.org/10.5281/zenodo.4441269
http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-gut/v1.0/
http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-gut/v1.0/genomes-all_metadata.tsv
http://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes/human-gut/v1.0/genomes-all_metadata.tsv
https://github.com/MrOlm/drep/blob/master/helper_scripts/parse_stb.py

inStrain, Release 1.0.0

(continued from previous page)

$ cat UHGG_genes/*.gene.fna > UHGG_reps.genes.fna

$ cat UHGG_genes/*.gene.faa > UHGG_reps.genes.faa

Finally we need to concatenate all genomes together into a single fasta file and create a bowtie2 mapping index from
it:

$ cat UHGG_reps/* > UHGG_reps.fasta

$ bowtie2-build UHGG_reps.fasta UHGG_reps.fasta.bt2 --large-index --threads 20

Mapping to the Genome Database

Here we will use the program Bowtie2 to align our reads to the reference database. If you downloaded the pre-made
version of bowtie2 index, you’ll need to extract it using the following command

$ tar -zxvf UHGG_reps_v1.bt2.tgz

This should yield a set of 5 files that end in .bt2l

Next we need to map our metagenomic reads to the database. For the purposes of this tutorial we’ll use metagenomic
reads that came from a premature infant fecal sample. The bowtie2 command to map these reads is

$ bowtie2 -p 10 -x /groups/banfield/projects/human/data8/ExternalData/UHGG/UHGG_reps.
→˓fasta.bt2 -1 /groups/banfield/projects/human/data8/raw.d/NIH5/reads/HR/N5_216_039G1_
→˓T0140F_S50_L002.HR.R1.fastq.gz -2 /groups/banfield/projects/human/data8/raw.d/NIH5/
→˓reads/HR/N5_216_039G1_T0140F_S50_L002.HR.R2.fastq.gz > UHGG_reps.fasta-vs-N5_216_
→˓039G1.sam

7032881 reads; of these:
7032881 (100.00%) were paired; of these:

1690938 (24.04%) aligned concordantly 0 times
1905098 (27.09%) aligned concordantly exactly 1 time
3436845 (48.87%) aligned concordantly >1 times

1690938 pairs aligned concordantly 0 times; of these:

139804 (8.27%) aligned discordantly 1 time

1551134 pairs aligned 0 times concordantly or discordantly; of these:

3102268 mates make up the pairs; of these:
1851642 (59.69%) aligned 0 times
279669 (9.01%) aligned exactly 1 time
970957 (31.30%) aligned >1 times

86.84% overall alignment rate

This mapping took just over 10 minutes on my computer. Notice how the bowtie2 states that over 85% of reads align
to the database- this is an important number to consider, as all reads that do not align to the database will be invisible to
inStrain. For human microbiome samples 85% is pretty good, but performing de novo genome assembly and including
sample-specific genomes would undoubtedly raise this number.

Running inStrain profile

Next we’ll profile the .sam file created above with inStrain. To do this we’ll need the scaffold-to-bin file, genes file,
and fasta file for the database that we created in the first step. If you downloaded them you can decompress them with

1.4. Tutorial 35

https://www.ncbi.nlm.nih.gov/biosample/?term=N5_216_039G1

inStrain, Release 1.0.0

the commands

$ gzip -d UHGG_reps.fasta.gz

$ gzip -d UHGG_reps.genes.fna.gz

**When running inStrain on a big database like we have here it’s critical to add the flag --database mode. This
flag does some quick calculations to figure out which genomes are probably not present, and stops working on them
right away. This leads to dramatic reductions in RAM usage and computational time.

The inStrain profile command we’ll use now is

$ inStrain profile UHGG_reps.fasta-vs-N5_216_039G1.sam /groups/banfield/projects/
→˓human/data8/ExternalData/UHGG/UHGG_reps.fasta -o UHGG_reps.fasta-vs-N5_216_039G1.IS
→˓-p 10 -g /groups/banfield/projects/human/data8/ExternalData/UHGG/UHGG_reps.genes.
→˓fna -s /groups/banfield/projects/human/data8/ExternalData/UHGG/UHGG_reps.stb --
→˓database_mode

This took just over an hour to run on my computer. We have now successfully generated an inStrain profile! For help
interpreting the output files, see Expected output. To link the genomes in the UHGG database with their taxonomy, use
the file genomes-nr_metadata.tsv which we downloaded above and is part of the overall download as well. To
subset to just the species representative genomes (SRGs) that make up this database, subset this table to only include
rows where the column “Genome” is equal to the column “Species_rep”.

Running inStrain compare

InStrain compare compare genomes that have been profiled by multiple different metagenomic mappings. To
compare genomes in the sample we just profiled above, we need to generate another bam file of reads from another
sample to the same .fasta file. For example, something like the command (based on reads from this fecal sample from
the same premature infant):

bowtie2 -p 10 -x /groups/banfield/projects/human/data8/ExternalData/UHGG/UHGG_reps.
→˓fasta.bt2 -1 /groups/banfield/projects/human/data8/raw.d/NIH5/reads/HR/N5_216_046G1_
→˓T0140F_S50_L002.HR.R1.fastq.gz -2 /groups/banfield/projects/human/data8/raw.d/NIH5/
→˓reads/HR/N5_216_046G1_T0140F_S50_L002.HR.R2.fastq.gz > UHGG_reps.fasta-vs-N5_216_
→˓046G1.sam

$ inStrain profile UHGG_reps.fasta-vs-N5_216_046G1.sam /groups/banfield/projects/
→˓human/data8/ExternalData/UHGG/UHGG_reps.fasta -o UHGG_reps.fasta-vs-N5_216_046G1.IS
→˓-p 10 -g /groups/banfield/projects/human/data8/ExternalData/UHGG/UHGG_reps.genes.
→˓fna -s /groups/banfield/projects/human/data8/ExternalData/UHGG/UHGG_reps.stb --
→˓database_mode

Now that we have two inStrain profile objects based on reads mapped to the same .fasta file, we can compare all
detected genomes using the following command:

inStrain compare -i UHGG_reps.fasta-vs-N5_216_039G1.IS/ UHGG_reps.fasta-vs-N5_216_
→˓046G1.IS/ -s /groups/banfield/projects/human/data8/ExternalData/UHGG/UHGG_reps.stb -
→˓p 6 -o UHGG_reps.fasta.IS.COMPARE --database_mode

Success! As before, for help interpreting this output see Expected output.

1.4.6 Tutorial #3) Merging custom genomes with an existing genome database.

Using a combination of sample-specific genomes for accuracy and public genome databases for comprehensiveness
can provide the best of both worlds. The steps are as follows:

36 Chapter 1. Contents

https://www.ncbi.nlm.nih.gov/biosample/?term=N5_216_046G1
https://www.ncbi.nlm.nih.gov/biosample/?term=N5_216_046G1

inStrain, Release 1.0.0

1) Establish a set of data-set specific genomes through de novo genome assembly and binning. This could be done
using a tool such as anvi’o, for example.

2) Download an entire database of individual genomes. See the top of Tutorial #2 for instructions on downloading
UHGG.

3) Dereplicate both sets of genomes. The specific threshold you use for dereplication is important and some
thoughts about choosing thresholds is available at Important concepts. A program that can be used for this
purpose is dRep; just make sure you have dRep version 3 which is able to handle much larger genome sets than
previous versions. An example command that could be used for this step is

dRep dereplicate MergedGenomeSet -g FullListOfGenomes.txt –S_algorithm fastANI –multi-
round_primary_clustering –clusterAlg greedy -ms 10000 -pa 0.9 -sa 0.95 -nc 0.30 -cm larger -p 16

This command will result in a species-level dereplicated set of genomes that include both your custom genomes and
the database genomes. More details on genome dereplication can be found here. To prioritize your custom genomes
over the database genomes, use the flag extra_weight_table within dRep.

4) Create a genome database out of the genomes in the dereplicated_genomes folder produced in the step above.
This can be done following the instructions at the top of Tutorial #2.

1.5 User Manual

1.5.1 Generating inStrain input

There are two main inputs to inStrain: a fasta file containing reference genome sequences, and a bam file containing
reads mapped to these sequences. Additionally and optionally, by providing a genes .fna file inStrain can calculate
gene-level metrics, and by providing a scaffold-to-bin file inStrain can calculate metrics on a genome level. Here we
go over some considerations involved in generating these inputs.

Preparing the .fasta file

A fasta file contains the DNA sequences of the contigs that you map your reads to. Choosing what fasta file you will
use (consensus / reference genomes) is important and will affect the interpretation of your inStrain results. Below we
describe the three most common strategies.

Please note that the fasta file provided to inStrain must always be the same as, or a subset of, the fasta file used to
create the bam file (i.e. the fasta file that reads were mapped to).

Using de novo assembled genomes (recommended)

This strategy involves assembling genomes from the metagenomic samples that you’d like to profile. This is the
recommended workflow for running inStrain:

1. Assemble reads into contigs for each sample collected from the environment. Recommended software:
IDBA_UD, MEGAHIT, metaSPADES.

2. Bin genomes out of each assembly using differential coverage binning. Recommended software: Bowtie2 (for
mapping), MetaBAT, CONCOCT, DasTOOL (for binning).

3. Dereplicate the entire set of genomes that you would like to profile (all genomes from all environments) at
97-99% identity, and filter out low quality genomes. Recommended software: dRep, checkM.

4. Create a scaffold-to-bin file from the genome set. Recommended software: parse_stb.py

1.5. User Manual 37

http://merenlab.org/software/anvio/
https://drep.readthedocs.io/en/latest/
https://drep.readthedocs.io/en/latest/choosing_parameters.html
https://github.com/MrOlm/drep/blob/master/helper_scripts/parse_stb.py

inStrain, Release 1.0.0

5. Create a bowtie2 index of the representative genomes from this dereplicated set and map reads to this set from
each sample. Recommended software: Bowtie2

6. Profile the resulting mapping .bam files using inStrain to calculate genome-level microdiveristy metrics for each
originally binned genome.

An important aspect of this workflow is to map to many genomes at once. Mapping to just one genome at a time
is highly discouraged, because this encourages mismapped reads from other genomes to be recruited by this genome.
By including many (dereplicated) genomes in your bowtie2 index, you will be able to far more accurately filter out
mismapped reads and reduce false positive SNPs. See Important concepts for more info.

For instructions on merging your genomes with a public database, see Tutorial #3 of Tutorial.

Using a single genome .fasta file

If your .fasta file is a single genome, the main consideration is that it should be a good representative genome for some
organism in your sample. Ideally, it was assembled directly from that sample, isolated from that sample, or you have
some other evidence that this genome is highly representative of a species in that sample. Regardless, you should
check your inStrain plot output and scaffold_info.tsv output file to be sure that your inStrain run had decent coverage
and breadth of coverage of the genome that you use before attempting to interpret the results.

Remember, your .fasta file can be a subset of the .fasta file that was used to create the .bam file. You can create a
.bam with all dereplicated genomes from your environment, but then just pass a .fasta file for only the genomes of
particular interest. This approach is recommended as opposed to creating a bam file for just each genome, as it reduces
mismapped reads

Using a metagenomic assembly

You can also pass inStrain an entire metagenomic assembly from a sample, including both binned and unbinned
contigs. In this case, the output inStrain profile will include population information for each contig in the set. To break
it down by microbial genome / species, you can include a scaffold-to-bin file to generate results by genome.

Preparing the .bam file

InStrain is designed primarily for paired-end Illumina read sequencing, though un-paired reads can also be used by
adjusting the run-time parameters. We recommend using the program Bowtie2 to map your reads to your genome.

Bowtie2 default parameters are what we use for mapping, but it may be worth playing around with them to see how
different settings perform on your data. It is important to note that the -X flag (capital X) is the expected insert length
and is by default 500. In many cases (e.g., 2x250 bp or simply datasets with longer inserts) it may be worthwhile
to increase this value up to -X 1000 for passing to Bowtie2. By default, if a read maps equally well to multiple
genomes, Bowtie2 will pick one of the positions randomly and give the read a MAPQ score of 1. Thus, if you’d like
to remove multi-mapped reads, you can set the minimum mapQ score to 2.

Other mapping software can also be used to generate .bam files for inStrain. However, some software (e.g. BBmap
and SNAP) use the fasta file scaffold descriptions when generating the .bam files, which causes problems for inStrain.
If using mapping software that does this, include the flag --use_full_fasta_header to let inStrain account for
this.

Note: If the reads that you’d like to run with inStrain are not working, please post an issue on GitHub. We’re happy
to upgrade inStrain to work with new mapping software and/or reads from different technologies.

38 Chapter 1. Contents

inStrain, Release 1.0.0

Preparing the genes file

You can run prodigal on your fasta file to generate an .fna file with the gene-level information. This .fna file can then
be provided to inStrain profile to get gene-level characterizations.

Example:

$ prodigal -i assembly.fasta -d genes.fna -a genes.faa

Preparing a scaffold-to-bin file

After running inStrain profile, most results are presented on a scaffold-by-scaffold basis. There are a number
of ways of telling inStrain which scaffold belongs to which genome, so that results can be analyzed on a genome-by-
gene level as well.

1. Individual .fasta files. As recommended above, if you want to run inStrain on multiple genomes in the same
sample, you should first concatenate all of the individual genomes into a single .fasta file and map to that. To
view the results of the individual genomes used to create the concatenated .fasta file, you can pass a list of the
individual .fasta files the -s argument.

2. Scaffold-to-bin file. This is a text file consists of two columns, with one column listing the scaffold name, and
the second column listing the genome bin name. Columns should be separated by tabs. The script parse_stb.py
can help you create a scaffold-to-bin file from a list of individual .fasta files, or to split a concatenated .fasta
file into individual genomes. The script comes packaged with the program dRep, and can be installed with the
command pip install drep.

3. Nothing. If all of your scaffolds belong to the same genome, by running inStrain profile without any -s
options it will summarize the results of all scaffolds together as if they all belong to the same genome.

1.5.2 Description of inStrain modules and arguments

The functionality of inStrain is broken up into modules. To see a list of available modules, check the help:

$ inStrain -h

...::: inStrain v1.3.2 :::...

Matt Olm and Alex Crits-Christoph. MIT License. Banfield Lab, UC Berkeley. 2019

Choose one of the operations below for more detailed help. See https://instrain.
→˓readthedocs.io for documentation.
Example: inStrain profile -h

Workflows:
profile -> Create an inStrain profile (microdiversity analysis) from a

→˓mapping.
compare -> Compare multiple inStrain profiles (popANI, coverage_overlap,

→˓etc.)

Single operations:
profile_genes -> Calculate gene-level metrics on an inStrain profile

→˓[DEPRECATED; USE profile INSTEAD]
genome_wide -> Calculate genome-level metrics on an inStrain profile
quick_profile -> Quickly calculate coverage and breadth of a mapping using

→˓coverM

(continues on next page)

1.5. User Manual 39

https://github.com/MrOlm/drep/blob/master/helper_scripts/parse_stb.py
https://github.com/MrOlm/drep

inStrain, Release 1.0.0

(continued from previous page)

filter_reads -> Commands related to filtering reads from .bam files
plot -> Make figures from the results of "profile" or "compare"
other -> Other miscellaneous operations

profile

Module description

The heart of inStrain. The input is a fasta file and a bam file, and the output is an IS_profile. The functionality of
inStrain profile is broken into several steps.

First, all reads in the .bam file are filtered to only keep those that map with sufficient quality. All non-paired reads
will be filtered out by default, and an additional set of filters are applied to each read pair (not the individual reads).
Command line parameters can be adjusted to change the specifics, but in general:

• Pairs must be mapped in the proper orientation with an expected insert size. The minimum insert distance can
be set with a command line parameter. The maximum insert distance is a multiple of the median insert distance.
So if pairs have a median insert size of 500bp, by default all pairs with insert sizes over 1500bp will be excluded.
For the max insert cutoff, the median_insert for all scaffolds is used.

• Pairs must have a minimum mapQ score. MapQ scores are confusing and how they’re calculated varies based
on the mapping algorithm being used, but are meant to represent both the number of mismatches in the mapping
and how unique that mapping is. With bowtie2, if the read maps equally well to two positions on the genome
(multi-mapped read), its mapQ score will be set to 2. The read in the pair with the higher mapQ is used for the
pair.

• Pairs must be above some minimum nucleotide identity (ANI) value. For example if reads in a pair are 100bp
each, and each read has a single mismatch, the ANI of that pair would be 0.99

Next, using only read pairs that pass filters, a number of microdiversity metrics are calculated on a scaffold-by-scaffold
basis. This includes:

• Calculate the coverage at each position along the scaffold

• Calculate the nucleotide diversity at each position along the scaffold in which the coverage is greater than the
min_cov argument.

• Identify SNSs and SNVs. The criteria for being reported as a divergent site are 1) More than min_cov number of
bases at that position, 2) More than min_freq percentage of reads that are a variant base, 3) The number of reads
with the variant base is more than the null model for that coverage.

• Calculate linkage between divergent sites on the same read pair. For each pair harboring a divergent site,
calculate the linkage of that site with other divergent sites within that same pair. This is only done for pairs of
divergent sites that are both on at least MIN_SNP reads

• Calculate scaffold-level properties. These include things like the overall coverage, breadth of coverage, average
nucleotide identity (ANI) between the reads and the reference genome, and the expected breadth of coverage
based on that true coverage.

Finally, this information is stored as an IS_profile object. This includes the locations of divergent sites, the number of
read pairs that passed filters (and other information) for each scaffold, the linkage between SNV pairs, ect.

Module parameters

To see the command-line arguments for inStrain profile, check the help:

40 Chapter 1. Contents

inStrain, Release 1.0.0

$ inStrain profile -h
usage: inStrain profile [-o OUTPUT] [--use_full_fasta_header] [-p PROCESSES]

[-d] [-h] [--version] [-l MIN_READ_ANI]
[--min_mapq MIN_MAPQ]
[--max_insert_relative MAX_INSERT_RELATIVE]
[--min_insert MIN_INSERT]
[--pairing_filter {paired_only,all_reads,non_discordant}]
[--priority_reads PRIORITY_READS]
[--detailed_mapping_info] [-c MIN_COV] [-f MIN_FREQ]
[-fdr FDR] [-g GENE_FILE] [-s [STB [STB ...]]]
[--mm_level] [--skip_mm_profiling] [--database_mode]
[--min_scaffold_reads MIN_SCAFFOLD_READS]
[--min_genome_coverage MIN_GENOME_COVERAGE]
[--min_snp MIN_SNP] [--store_everything]
[--scaffolds_to_profile SCAFFOLDS_TO_PROFILE]
[--rarefied_coverage RAREFIED_COVERAGE]
[--window_length WINDOW_LENGTH] [--skip_genome_wide]
[--skip_plot_generation]
bam fasta

REQUIRED:
bam Sorted .bam file
fasta Fasta file the bam is mapped to

I/O PARAMETERS:
-o OUTPUT, --output OUTPUT

Output prefix (default: inStrain)
--use_full_fasta_header

Instead of using the fasta ID (space in header before
space), use the full header. Needed for some mapping
tools (including bbMap) (default: False)

SYSTEM PARAMETERS:
-p PROCESSES, --processes PROCESSES

Number of processes to use (default: 6)
-d, --debug Make extra debugging output (default: False)
-h, --help show this help message and exit
--version show program's version number and exit

READ FILTERING OPTIONS:
-l MIN_READ_ANI, --min_read_ani MIN_READ_ANI

Minimum percent identity of read pairs to consensus to
use the reads. Must be >, not >= (default: 0.95)

--min_mapq MIN_MAPQ Minimum mapq score of EITHER read in a pair to use
that pair. Must be >, not >= (default: -1)

--max_insert_relative MAX_INSERT_RELATIVE
Multiplier to determine maximum insert size between
two reads - default is to use 3x median insert size.
Must be >, not >= (default: 3)

--min_insert MIN_INSERT
Minimum insert size between two reads - default is 50
bp. If two reads are 50bp each and overlap completely,
their insert will be 50. Must be >, not >= (default:
50)

--pairing_filter {paired_only,all_reads,non_discordant}
How should paired reads be handled?
paired_only = Only paired reads are retained

(continues on next page)

1.5. User Manual 41

inStrain, Release 1.0.0

(continued from previous page)

non_discordant = Keep all paired reads and singleton reads
→˓that map to a single scaffold

all_reads = Keep all reads regardless of pairing status (NOT
→˓RECOMMENDED; See documentation for deatils)

(default: paired_only)
--priority_reads PRIORITY_READS

The location of a list of reads that should be
retained regardless of pairing status (for example
long reads or merged reads). This can be a .fastq file
or text file with list of read names (will assume file
is compressed if ends in .gz (default: None)

READ OUTPUT OPTIONS:
--detailed_mapping_info

Make a detailed read report indicating deatils about
each individual mapped read (default: False)

VARIANT CALLING OPTIONS:
-c MIN_COV, --min_cov MIN_COV

Minimum coverage to call an variant (default: 5)
-f MIN_FREQ, --min_freq MIN_FREQ

Minimum SNP frequency to confirm a SNV (both this AND
the FDR snp count cutoff must be true to call a SNP).
(default: 0.05)

-fdr FDR, --fdr FDR SNP false discovery rate- based on simulation data
with a 0.1 percent error rate (Q30) (default: 1e-06)

GENE PROFILING OPTIONS:
-g GENE_FILE, --gene_file GENE_FILE

Path to prodigal .fna genes file. If file ends in .gb
or .gbk, will treat as a genbank file (EXPERIMENTAL;
the name of the gene must be in the gene qualifier)
(default: None)

GENOME WIDE OPTIONS:
-s [STB [STB ...]], --stb [STB [STB ...]]

Scaffold to bin. This can be a file with each line
listing a scaffold and a bin name, tab-seperated. This
can also be a space-seperated list of .fasta files,
with one genome per .fasta file. If nothing is
provided, all scaffolds will be treated as belonging
to the same genome (default: [])

READ ANI OPTIONS:
--mm_level Create output files on the mm level (see documentation

for info) (default: False)
--skip_mm_profiling Dont perform analysis on an mm level; saves RAM and

time; impacts plots and raw_data (default: False)

PROFILE OPTIONS:
--database_mode Set a number of parameters to values appropriate for

mapping to a large fasta file. Will set:
--min_read_ani 0.92 --skip_mm_profiling
--min_genome_coverage 1 (default: False)

--min_scaffold_reads MIN_SCAFFOLD_READS
Minimum number of reads mapping to a scaffold to
proceed with profiling it (default: 1)

(continues on next page)

42 Chapter 1. Contents

inStrain, Release 1.0.0

(continued from previous page)

--min_genome_coverage MIN_GENOME_COVERAGE
Minimum number of reads mapping to a genome to proceed
with profiling it. MUST profile .stb if this is set
(default: 0)

--min_snp MIN_SNP Absolute minimum number of reads connecting two SNPs
to calculate LD between them. (default: 20)

--store_everything Store intermediate dictionaries in the pickle file;
will result in significantly more RAM and disk usage
(default: False)

--scaffolds_to_profile SCAFFOLDS_TO_PROFILE
Path to a file containing a list of scaffolds to
profile- if provided will ONLY profile those scaffolds
(default: None)

--rarefied_coverage RAREFIED_COVERAGE
When calculating nucleotide diversity, also calculate
a rarefied version with this much coverage (default:
50)

--window_length WINDOW_LENGTH
Break scaffolds into windows of this length when
profiling (default: 10000)

OTHER OPTIONS:
--skip_genome_wide Do not generate tables that consider groups of

scaffolds belonging to genomes (default: False)
--skip_plot_generation

Do not make plots (default: False)

compare

Module description

Compare provides the ability to compare multiple inStrain profiles (created by running inStrain profile).

Note: inStrain can only compare inStrain profiles that have been mapped to the same .fasta file

inStrain compare does pairwise comparisons between each input inStrain profile. For each pair, a series of steps
are undertaken.

1. All positions in which both IS_profile objects have at least min_cov coverage (5x by default) are identified. This
information can be stored in the output by using the flag –store_coverage_overlap, but due to it’s size, it’s not
stored by default

2. Each position identified in step 1 is compared to calculate both conANI and popANI. The way that it compares
positions is by testing whether the consensus base in sample 1 is detected at all in sample 2 and vice-versa.
Detection of an allele in a sample is based on that allele being above the set -min_freq and -fdr. All detected
differences between each pair of samples can be reported if the flag –store_mismatch_locations is set.

3. The coverage overlap and the average nucleotide identity for each scaffold is reported. For details on how this
is done, see Expected output

4. New in v1.6 Tables that list the coverage and base-frequencies of each SNV in all samples can be generated
using the –bams parameter within inStrain compare. For each inStrain profile provided with the -i parameter, the
corresponding bam file must be provided with the –bams parameter. The same read filtering parameters used in

1.5. User Manual 43

inStrain, Release 1.0.0

the original profile command will be used when running this analysis. See section SNV POOLING OPTIONS:
in the help below for full information about this option, and see Expected output for the tables it creates.

Module parameters

To see the command-line options, check the help:

$ inStrain compare -h
usage: inStrain compare -i [INPUT [INPUT ...]] [-o OUTPUT] [-p PROCESSES] [-d]

[-h] [--version] [-s [STB [STB ...]]] [-c MIN_COV]
[-f MIN_FREQ] [-fdr FDR] [--database_mode]
[--breadth BREADTH] [-sc SCAFFOLDS] [--genome GENOME]
[--store_coverage_overlap]
[--store_mismatch_locations]
[--include_self_comparisons] [--skip_plot_generation]
[--group_length GROUP_LENGTH] [--force_compress]
[-ani ANI_THRESHOLD] [-cov COVERAGE_TRESHOLD]
[--clusterAlg {centroid,weighted,ward,single,complete,average,

→˓median}]
[-bams [BAMS [BAMS ...]]] [--skip_popANI]

REQUIRED:
-i [INPUT [INPUT ...]], --input [INPUT [INPUT ...]]

A list of inStrain objects, all mapped to the same
.fasta file (default: None)

-o OUTPUT, --output OUTPUT
Output prefix (default: instrainComparer)

SYSTEM PARAMETERS:
-p PROCESSES, --processes PROCESSES

Number of processes to use (default: 6)
-d, --debug Make extra debugging output (default: False)
-h, --help show this help message and exit
--version show program's version number and exit

GENOME WIDE OPTIONS:
-s [STB [STB ...]], --stb [STB [STB ...]]

Scaffold to bin. This can be a file with each line
listing a scaffold and a bin name, tab-seperated. This
can also be a space-seperated list of .fasta files,
with one genome per .fasta file. If nothing is
provided, all scaffolds will be treated as belonging
to the same genome (default: [])

VARIANT CALLING OPTIONS:
-c MIN_COV, --min_cov MIN_COV

Minimum coverage to call an variant (default: 5)
-f MIN_FREQ, --min_freq MIN_FREQ

Minimum SNP frequency to confirm a SNV (both this AND
the FDR snp count cutoff must be true to call a SNP).
(default: 0.05)

-fdr FDR, --fdr FDR SNP false discovery rate- based on simulation data
with a 0.1 percent error rate (Q30) (default: 1e-06)

DATABASE MODE PARAMETERS:
--database_mode Using the parameters below, automatically determine

which genomes are present in each Profile and only
(continues on next page)

44 Chapter 1. Contents

inStrain, Release 1.0.0

(continued from previous page)

compare scaffolds from those genomes. All profiles
must have run Profile with the same .stb (default:
False)

--breadth BREADTH Minimum breadth_minCov required to count a genome
present (default: 0.5)

OTHER OPTIONS:
-sc SCAFFOLDS, --scaffolds SCAFFOLDS

Location to a list of scaffolds to compare. You can
also make this a .fasta file and it will load the
scaffold names (default: None)

--genome GENOME Run scaffolds belonging to this single genome only.
Must provide an .stb file (default: None)

--store_coverage_overlap
Also store coverage overlap on an mm level (default:
False)

--store_mismatch_locations
Store the locations of SNPs (default: False)

--include_self_comparisons
Also compare IS profiles against themself (default:
False)

--skip_plot_generation
Dont create plots at the end of the run. (default:
False)

--group_length GROUP_LENGTH
How many bp to compare simultaneously (higher will use
more RAM and run more quickly) (default: 10000000)

--force_compress Force compression of all output files (default: False)

GENOME CLUSTERING OPTIONS:
-ani ANI_THRESHOLD, --ani_threshold ANI_THRESHOLD

popANI threshold to cluster genomes at. Must provide
.stb file to do so (default: 0.99999)

-cov COVERAGE_TRESHOLD, --coverage_treshold COVERAGE_TRESHOLD
Minimum percent_genome_compared for a genome
comparison to count; if below the popANI will be set
to 0. (default: 0.1)

--clusterAlg {centroid,weighted,ward,single,complete,average,median}
Algorithm used to cluster genomes (passed to
scipy.cluster.hierarchy.linkage) (default: average)

SNV POOLING OPTIONS:
-bams [BAMS [BAMS ...]], --bams [BAMS [BAMS ...]]

Location of .bam files used during inStrain profile
commands; needed to pull low-frequency SNVs. MUST BE
IN SAME ORDER AS THE INPUT FILES (default: None)

--skip_popANI Only run SNV Pooling; skip other compare operations
(default: False)

Other modules

The other modules are not commonly used, and mainly provide auxiliary functions or allow you to run certain steps
of profile after the fact. It is recommended to provide a genes file and/or a scaffold-to-bin file during inStrain
profile rather than using profile_genes or genome_wide, as it is more computationally efficient to do things
that way.

1.5. User Manual 45

inStrain, Release 1.0.0

parse_annotations

This is a new module (released in inStrain version 1.7) that provides a straightforward way to annotate genes for
functional analysis with inStrain. It’s inputs are 1 or more inStrain profile objects (a set of genes must of been
provided when running profile) and a gene annotation table. The format of the gene annotation MUST be a .csv file
that looks like the following:

Table 2: AnnotationTable.csv
gene anno
AF21-42.Scaf7_79 K14374
AF21-42.Scaf7_79 K12633
AF21-42.Scaf7_79 K16034
AF21-42.Scaf7_79 K12705
AF21-42.Scaf7_79 K15467
AF21-42.Scaf7_79 K20592
AF21-42.Scaf7_79 K15958
AF21-42.Scaf7_79 K22590
AF21-42.Scaf7_80 K02835
AF21-42.Scaf7_81 K03431

The top line MUST read gene,anno exactly, and all other lines must have the format gene, comma (,), annotation. The
gene column must match the names of the genes provided to inStrain profile, and the second column can be whatever
you want it to be. It is fine if a gene as multiple annotations, just make that gene have multiple lines in this file.

For tips on running the annotations themselves, see the section Gene Annotation below. Also see the section Running
inStrain parse_annotations in Tutorial for more info.

To see the command-line options, check the help:

$ inStrain parse_annotations -h
usage: inStrain parse_annotations -i [INPUT [INPUT ...]] -a [ANNOTATIONS [ANNOTATIONS
→˓...]] [-o OUTPUT] [-p PROCESSES] [-d] [-h] [--version] [-b MIN_GENOME_BREADTH]

[-g MIN_GENE_BREADTH] [--store_rawdata]

REQUIRED:
-i [INPUT [INPUT ...]], --input [INPUT [INPUT ...]]

A list of inStrain objects, all mapped to the same .fasta
→˓file (default: None)
-a [ANNOTATIONS [ANNOTATIONS ...]], --annotations [ANNOTATIONS [ANNOTATIONS ...]]

A table or set of tables with gene annotations.
Must be in specific format; see inStrain website for details

→˓(default: None)
-o OUTPUT, --output OUTPUT

Output prefix (default: annotation_output)

SYSTEM PARAMETERS:
-p PROCESSES, --processes PROCESSES

Number of processes to use (default: 6)
-d, --debug Make extra debugging output (default: False)
-h, --help show this help message and exit
--version show program's version number and exit

OTHER OPTIONS:
-b MIN_GENOME_BREADTH, --min_genome_breadth MIN_GENOME_BREADTH

Only annotate genomes on genomes with at least this genome
→˓breadth. Requires having genomes called. Set to 0 to include all genes. (default: 0.
→˓5)

(continues on next page)

46 Chapter 1. Contents

inStrain, Release 1.0.0

(continued from previous page)

-g MIN_GENE_BREADTH, --min_gene_breadth MIN_GENE_BREADTH
Only annotate genes with at least this breadth. Set to 0 to

→˓include all genes. (default: 0.8)
--store_rawdata Store the raw data dictionary (default: False)

quick_profile

This is a quirky module that is not really related to any of the others. It is used to quickly profile a bam file to pull
out scaffolds from genomes that are at a sufficient breadth. To use it you must provide a .bam file, the .fasta file that
you mapped to to generate the .bam file, and a scaffold to bin file (see above section for details). On the backend this
module is really just calling the program coverM

To see the command-line options, check the help:

$ inStrain quick_profile -h
usage: inStrain quick_profile [-p PROCESSES] [-d] [-h] [--version]

[-s [STB [STB ...]]] [-o OUTPUT]
[--breadth_cutoff BREADTH_CUTOFF]
[--stringent_breadth_cutoff STRINGENT_BREADTH_CUTOFF]
bam fasta

REQUIRED:
bam Sorted .bam file
fasta Fasta file the bam is mapped to

SYSTEM PARAMETERS:
-p PROCESSES, --processes PROCESSES

Number of processes to use (default: 6)
-d, --debug Make extra debugging output (default: False)
-h, --help show this help message and exit
--version show program's version number and exit

OTHER OPTIONS:
-s [STB [STB ...]], --stb [STB [STB ...]]

Scaffold to bin. This can be a file with each line
listing a scaffold and a bin name, tab-seperated. This
can also be a space-seperated list of .fasta files,
with one genome per .fasta file. If nothing is
provided, all scaffolds will be treated as belonging
to the same genome (default: [])

-o OUTPUT, --output OUTPUT
Output prefix (default: QuickProfile)

--breadth_cutoff BREADTH_CUTOFF
Minimum genome breadth to pull scaffolds (default:
0.5)

--stringent_breadth_cutoff STRINGENT_BREADTH_CUTOFF
Minimum breadth to let scaffold into coverm raw
results (done with greater than; NOT greater than or
equal to) (default: 0.0)

plot

This module produces plots based on the results of inStrain profile and inStrain compare. In both cases, before plots
can be made, inStrain genome_wide must be run on the output folder first. In order to make plots 8 and 9, inStrain

1.5. User Manual 47

https://github.com/wwood/CoverM

inStrain, Release 1.0.0

profile_genes must be run first as well.

The recommended way of running this module is with the default -pl a. It will just try and make all of the plots that it
can, and will tell you about any plots that it fails to make.

See Expected output for an example of the plots it can make.

To see the command-line options, check the help:

$ inStrain plot -h
usage: inStrain plot -i IS [-pl [PLOTS [PLOTS ...]]] [-p PROCESSES] [-d] [-h]

REQUIRED:
-i IS, --IS IS an inStrain profile object (default: None)
-pl [PLOTS [PLOTS ...]], --plots [PLOTS [PLOTS ...]]

Plots. Input 'all' or 'a' to plot all
1) Coverage and breadth vs. read mismatches
2) Genome-wide microdiversity metrics
3) Read-level ANI distribution
4) Major allele frequencies
5) Linkage decay
6) Read filtering plots
7) Scaffold inspection plot (large)
8) Linkage with SNP type (GENES REQUIRED)
9) Gene histograms (GENES REQUIRED)
10) Compare dendrograms (RUN ON COMPARE; NOT PROFILE)
(default: a)

SYSTEM PARAMETERS:
-p PROCESSES, --processes PROCESSES

Number of processes to use (default: 6)
-d, --debug Make extra debugging output (default: False)
-h, --help show this help message and exit

other

This module holds odds and ends functionalities. As of version 1.4, all it can do is convert old IS_profile objects
(>v0.3.0) to newer versions (v0.8.0) and create runtime summaries of complete inStrain runs. As the code base around
inStrain matures, we expect more functionalities to be included here.

To see the command-line options, check the help:

$ inStrain other -h
usage: inStrain other [-p PROCESSES] [-d] [-h] [--version] [--old_IS OLD_IS]

[--run_statistics RUN_STATISTICS]

SYSTEM PARAMETERS:
-p PROCESSES, --processes PROCESSES

Number of processes to use (default: 6)
-d, --debug Make extra debugging output (default: False)
-h, --help show this help message and exit
--version show program's version number and exit

OTHER OPTIONS:
--old_IS OLD_IS Convert an old inStrain version object to the newer

version. (default: None)
--run_statistics RUN_STATISTICS

(continues on next page)

48 Chapter 1. Contents

inStrain, Release 1.0.0

(continued from previous page)

Generate runtime reports for an inStrain run.
(default: None)

1.5.3 Other related operations

The goal of this section is to describe how to perform other operations that are commonly part of an inStrain-based
workflow.

Gene Annotation

Below are some potential ways of annotating genes for follow-up inStrain analysis. The input to all operations is an
amino acid fasta file (.faa), which should match the .fna file you passed to inStrain (see user_manual#preparing-the-
genes-file for an example command)

If you have some other annotation you like to use, please add to to this list by submitting a pull request on
GitHub! (https://github.com/MrOlm/inStrain/blob/master/docs/user_manual.rst)

KEGG Orthologies (KOs)

KOs can be annotated using KofamScan / KofamKOALA (https://www.genome.jp/tools/kofamkoala/)

Download the database and executables
wget https://www.genome.jp/ftp/tools/kofam_scan/kofam_scan-1.3.0.tar.gz
wget https://www.genome.jp/ftp/db/kofam/ko_list.gz
wget https://www.genome.jp/ftp/db/kofam/profiles.tar.gz

Unzip and untar
gzip -d ko_list.gz
tar xf profiles.tar.gz
tar xf kofam_scan-1.3.0.tar.gz

Run kofamscan
exec_annotation -p profiles -k ko_list --cpu 10 --tmp-dir ./tmp -o genes.faa.
→˓kofamscan genes.faa

The following python code parses the resulting table

import pandas as pd
from collections import defaultdict

def parse_kofamscan(floc):
"""
v1.0: 1/6/2023

Parse kofamscan results. Only save results where KO score > threshold

Returns:
Adb: DataFrame with KOfam results

"""
table = defaultdict(list)

with open(floc, 'r') as o:

(continues on next page)

1.5. User Manual 49

https://github.com/MrOlm/inStrain/blob/master/docs/user_manual.rst
https://www.genome.jp/tools/kofamkoala/

inStrain, Release 1.0.0

(continued from previous page)

This blockis for RAM efficiency
while True:

line = o.readline()
if not line:

break

line = line.strip()
if line[0] == '#':

continue

lw = line.split()
if lw[0] == '*':

del lw[0]

if lw[2] == '-':
lw[2] = 0

try:
if float(lw[3]) >= float(lw[2]):

g = lw[0]
k = lw[1]

table['gene'].append(g)
table['KO'].append(k)
table['thrshld'].append(float(lw[2]))
table['score'].append(float(lw[3]))
table['e_value'].append(float(lw[4]))
table['KO_definition'].append(' '.join(lw[4:]))

except:
print(line)
assert False

o.close()

Adb = pd.DataFrame(table)
return Adb

floc = "genes.faa.kofamscan genes.faa"
Adb = parse_kofamscan(floc)

Where Adb is a pandas DataFrame that looks like:

Table 3: Adb
gene KO thrshld score e_value KO_definition
AP010889.1_1 K02313 130.13 593.2 1.200000e-

178
chromosomal replication initiator protein

AP010889.1_2 K02338 52.73 345.9 1.300000e-
103

DNA polymerase III subunit beta [EC:2.7.7.7]

AP010889.1_2 K22359 0.00 12.5 3.000000e-02 alkene monooxygenase gamma subunit
[EC:1.14.13. . .

AP010889.1_3 K03629 115.43 397.5 1.600000e-
119

DNA replication and repair protein RecF

AP010889.1_5 K02470 946.10 986.6 1.500000e-
297

DNA gyrase subunit B [EC:5.6.2.2]

50 Chapter 1. Contents

inStrain, Release 1.0.0

Carbohydrate-Active enZYmes (CAZymes)

CAZymes can be profiled using the HMMs provided by dbCAN, which are based on CAZyDB (http://www.cazy.org/)

Download the HMMs and executables
wget https://bcb.unl.edu/dbCAN2/download/Databases/V11/dbCAN-HMMdb-V11.txt
wget https://bcb.unl.edu/dbCAN2/download/Databases/V11/hmmscan-parser.sh

Prepare HMMs
hmmpress dbCAN-HMMdb-V11.txt

Run (based on readme here - https://bcb.unl.edu/dbCAN2/download/Databases/V11/
→˓readme.txt)
hmmscan --domtblout genes.faa_vs_dbCAN_v11.dm dbCAN-HMMdb-V11.txt genes.faa > /dev/
→˓null ; sh /hmmscan-parser.sh genes.faa_vs_dbCAN_v11.dm > genes.faa_vs_dbCAN_v11.dm.
→˓ps ; cat genes.faa_vs_dbCAN_v11.dm.ps | awk '$5<1e-15&&$10>0.35' > genes.faa_vs_
→˓dbCAN_v11.dm.ps.stringent

The following python code parses the resulting table

import pandas as pd
from collections import defaultdict

def parse_dbcan(floc):
"""
v1.0 - 1/6/2023

Parse dbcan2 results

Returns:
Cdb: DataFrame with dbCAN2 results

"""

h = ['Family_HMM', 'HMM_length', 'gene', 'Query_length', 'E-value', 'HMM_start',
→˓'HMM_end', 'Query_start', 'Query_end', 'Coverage']

Zdb = pd.read_csv(floc, sep='\t', names=h)

Parse names
def get_type(f):

for start in ['PL', 'AA', 'GH', 'CBM', 'GT', 'CE']:
if f.startswith(start):

return start
if f in ['dockerin', 'SLH', 'cohesin']:

return 'cellulosome'
print(f)
assert False

def get_family(f):
for start in ['PL', 'AA', 'GH', 'CBM', 'GT', 'CE']:

if f.startswith(start):
if f == 'CBM35inCE17':

return 35
try:

return int(f.replace(start, '').split('_')[0])
except:

print(f)
assert False

(continues on next page)

1.5. User Manual 51

http://www.cazy.org/

inStrain, Release 1.0.0

(continued from previous page)

if f in ['dockerin', 'SLH', 'cohesin']:
return f

print(f)
assert False

def get_subfamily(f):
if f.startswith('GT2_'):

if f == 'GT2_Glycos_transf_2':
return 0

else:
return f.split('_')[-1]

if '_' in f:
try:

return int(f.split('_')[1])
except:

print(f)
assert False

else:
return 0

t2n = {'GH':'glycoside hydrolases',
'PL':'polysaccharide lyases',
'GT':'glycosyltransferases',
'CBM':'non-catalytic carbohydrate-binding modules',
'AA':'auxiliary activities',
'CE':'carbohydrate esterases',
'cellulosome':'cellulosome'}

ZIdb = Zdb[['Family_HMM']].drop_duplicates()
ZIdb['raw_family'] = [x.split('.')[0] for x in ZIdb['Family_HMM']]
ZIdb['class'] = [get_type(f) for f in ZIdb['raw_family']]
ZIdb['class_name'] = ZIdb['class'].map(t2n)
ZIdb['family'] = [get_family(f) for f in ZIdb['raw_family']]
ZIdb['subfamily'] = [get_subfamily(f) for f in ZIdb['raw_family']]

ZIdb['CAZyme'] = [f"{c}{f}_{s}" for c, f, s in zip(ZIdb['class'], ZIdb['family'],
→˓ZIdb['subfamily'])]

ZSdb = pd.merge(Zdb, ZIdb[['Family_HMM', 'class', 'family',
'subfamily', 'CAZyme']], on='Family_HMM', how='left')

Reorder
ZSdb = ZSdb[[

'gene',
'CAZyme',
'class',
'family',
'subfamily',
'Family_HMM',
'HMM_length',
'Query_length',
'E-value',
'HMM_start',
'HMM_end',
'Query_start',
'Query_end',
'Coverage',

(continues on next page)

52 Chapter 1. Contents

inStrain, Release 1.0.0

(continued from previous page)

]]

return ZSdb

floc = "/LAB_DATA/CURRENT/CURRENT_Metagenomics_PROJECTS/2022_Misame/gene_annotation/
→˓dbCAN/DeltaI_NewBifido.faa_vs_dbCAN_v11.dm.ps"
Cdb = parse_dbcan(floc)

Where Cdb is a pandas DataFrame that looks like:

Table 4: Cdb
gene CAZymeclass fam-

ily
sub-
fam-
ily

Fam-
ily_HMM

HMM_lengthQuery_lengthE-
value

HMM_startHMM_endQuery_startQuery_endCov-
er-
age

AP010888.1_103GH51_0GH 51 0 GH51.hmm630 516 1.700000e-
137

84 542 9 515 0.726984

AP010888.1_107GH13_18GH 13 18 GH13_18.hmm343 509 4.100000e-
114

2 343 35 379 0.994169

AP010888.1_113GH13_30GH 13 30 GH13_30.hmm365 605 3.100000e-
163

1 365 33 403 0.997260

AP010888.1_115GH77_0GH 77 0 GH77.hmm494 746 4.700000e-
134

2 482 204 728 0.971660

AP010888.1_120GH31_0GH 31 0 GH31.hmm427 846 1.300000e-
129

1 427 198 627 0.997658

Antibiotic Resistance Genes

There are many, many different ways of identifying antibiotic resistance genes. The method below is based on identi-
fying homologs to know antibiotic resistance genes using the CARD database (https://card.mcmaster.ca/download)

Download and unzip database
wget https://card.mcmaster.ca/download/0/broadstreet-v3.2.5.tar.bz2
tar -xvjf broadstreet-v3.2.5.tar.bz2

Make a diamond database out of it
diamond makedb --in protein_fasta_protein_homolog_model.fasta -d protein_fasta_
→˓protein_homolog_model.dmd --threads 6

Run
diamond blastp -q genes.faa -d protein_fasta_protein_homolog_model.dmd -f 6 -e 0.0001
→˓-k 1 -p 6 -o genes.faa_vs_CARD.dm

The following python code parses the resulting table

import pandas as pd
from collections import defaultdict

def parse_card(floc, jloc=None):
"""
v1.0 - 1/6/2023

Parse CARD

(continues on next page)

1.5. User Manual 53

https://card.mcmaster.ca/download

inStrain, Release 1.0.0

(continued from previous page)

Returns:
Rdb: DataFrame with CARD results

"""
h = ['gene', 'target', 'percentID', 'alignment_length', 'mm', 'gaps',

'querry_start', 'querry_end', 'target_start', 'target_end', 'e-value', 'bit_
→˓score',

'extra']
db = pd.read_csv(floc, sep='\t', names=h)
del db['extra']

db['protein_seq_accession'] = [t.split('|')[1] for t in db['target']]
db['ARO'] = [t.split('|')[2].split(':')[-1] for t in db['target']]
db['CARD_short_name'] = [t.split('|')[3].split(':')[-1] for t in db['target']]

Reorder
header = ['gene', 'CARD_short_name', 'ARO', 'target']
db = db[header + [x for x in list(db.columns) if x not in header]]

if jloc is None:
return db

Parse more
import json
j = json.load(open(jloc))

aro2name = {}
aro2categories = {}

for n, m2t in j.items():
if type(m2t) != type({}):

continue

if 'ARO_description' in m2t:
aro2name[m2t['ARO_accession']] = m2t['ARO_description']

if 'ARO_category' in m2t:
cats = []
for cat, c2t in m2t['ARO_category'].items():

if 'category_aro_accession' in c2t:
cats.append(c2t['category_aro_accession'])

aro2categories[m2t['ARO_accession']] = '|'.join(cats)

db['ARO_description'] = db['ARO'].map(aro2name)
db['ARO_category_accessions'] = db['ARO'].map(aro2categories)

header = ['gene', 'CARD_short_name', 'ARO', 'ARO_description', 'ARO_category_
→˓accessions', 'target']

db = db[header + [x for x in list(db.columns) if x not in header]]

return db

floc = "/genes.faa_vs_CARD.dm"
Rdb = parse_card(floc, jloc = "card.json")

Where Rdb is a pandas DataFrame that looks like:

54 Chapter 1. Contents

inStrain, Release 1.0.0

Table 5: Rdb
gene CARD_short_nameARO ARO_descriptionARO_category_accessionstar-

get
per-
centID

align-
ment_length

mm gaps querry_startquerry_endtar-
get_start

tar-
get_end

e-
value

bit_scorepro-
tein_seq_accession

AP010889.1_21macB 3000535MacB
is
an
ATP-
binding
cas-
sette
(ABC)
trans-
por. . .

0010001|0000006|0000000|3000159|0010000gb|AAV85982.1|ARO:3000535|macB34.6 231 137 5 1 227 3 223 7.170000e-
33

123.0 AAV85982.1

AP010889.1_53lin 3004651Lis-
te-
ria
mono-
cy-
to-
genes
EGD-
e
lin
gene
for
linc. . .

3000221|0000046|0000017|0001004gb|AEO25219.1|ARO:3004651|lin21.4 415 260 14 170 560 80 452 1.560000e-
07

51.2 AEO25219.1

AP010889.1_106patA 3000024PatA
is
an
ABC
trans-
porter
of
Strep-
to-
coc-
cus
pn. . .

0010001|0000036|3000662|0000001|3000159|0010000gb|AAK76137.1|ARO:3000024|patA25.9 228 149 7 80 298 344 560 1.560000e-
14

70.9 AAK76137.1

AP010889.1_107bcrA 3002987bcrA
is
an
ABC
trans-
porter
found
in
Bacil-
lus
l. . .

0010001|0000041|3000629|3000630|3000631|300005. . .gb|AAA99504.1|ARO:3002987|bcrA28.3 212 149 2 5 216 4 212 7.430000e-
26

99.8 AAA99504.1

AP010889.1_129Abau_AbaF3004573Ex-
pres-
sion
of
abaF
in
E.
coli
re-
sulted
in
incr. . .

0010002|0000025|3007149|3000159|0010000gb|ABO11759.2|ARO:3004573|Abau_AbaF31.5 435 280 7 24 453 4 425 7.750000e-
72

230.0 ABO11759.2

1.5. User Manual 55

inStrain, Release 1.0.0

Human milk oligosaccharide (HMO) Utilization genes

This is pretty niche, but it’s something I (Matt Olm) am interested in. So here is how it can be done!

Download the Supplemental Table S4 from here: https://data.mendeley.com/datasets/
→˓gc4d9h4x67/2

wget https://data.mendeley.com/public-files/datasets/gc4d9h4x67/files/565528fe-585a-
→˓4f71-bb84-9f76625a872b/file_downloaded -O humann2_HMO_annotation.csv

Download the reference genome from here: https://www.ncbi.nlm.nih.gov/nuccore/
→˓CP001095.1

Click “Send to:" -> “Coding Sequences” -> Format: “FASTA Protein” -> Rename to
→˓"Bifidobacterium_longum_subsp_infantis_ATCC_15697.NCBI.faa"

Pull the HMO genes using pullseq

pullseq -i Bifidobacterium_longum_subsp_infantis_ATCC_15697.NCBI.faa -n HMO_list >
→˓Blon_HMO_genes.faa

Search against them

diamond makedb --in Blon_HMO_genes.faa -d /LAB_DATA/DATABASES/HMO_ID/Blon_HMO_genes.
→˓faa.dmd

diamond blastp -q genes.faa -d Blon_HMO_genes.faa.dmd.dmnd -f 6 -e 0.0001 -k 1 -p 6 -
→˓o genes.faa_vs_HMO.b6

The following python code parses the resulting table

def parse_HMOs(floc, iloc):
"""
v1.0 - 1/6/2023

Parse HMOs

Returns:
Hdb: DataFrame with HMO results

"""

Hdb = pd.read_csv(iloc, sep=';')
Hdb['target'] = [x.replace('_cds_', '_prot_').replace('lcl.', 'lcl|').strip() for

→˓x in Hdb['HMOgenes']]
Hdb = Hdb[['target', 'Blon', 'Cluster']]

h = ['gene', 'target', 'percentID', 'alignment_length', 'mm', 'gaps',
'querry_start', 'querry_end', 'target_start', 'target_end', 'e-value', 'bit_

→˓score',
'extra']

db = pd.read_csv(floc, sep='\t', names=h)
del db['extra']

Filter a bit
db = db[(db['percentID'] >= 50)]

Merge

(continues on next page)

56 Chapter 1. Contents

inStrain, Release 1.0.0

(continued from previous page)

Hdb = pd.merge(db, Hdb, how='left')

Re-order
header = ['gene', 'Blon', 'Cluster', 'target']
Hdb = Hdb[header + [x for x in list(Hdb.columns) if x not in header]]

return Hdb

floc = '/LAB_DATA/CURRENT/CURRENT_Metagenomics_PROJECTS/2022_Misame/gene_annotation/
→˓HMO/DeltaI_NewBifido.faa_vs_HMO.b6'
iloc = '/LAB_DATA/DATABASES/HMO_ID/humann2_HMO_annotation.csv'

Hdb = parse_HMOs(floc, iloc)

Where Hdb is a pandas DataFrame that looks like:

Table 6: Hdb
gene Blon Clus-

ter
target per-

centID
align-
ment_length

mm gaps querry_startquerry_endtar-
get_start

tar-
get_end

e-
value

bit_score

AP010889.1_103Blon_0104Ure-
ase

lcl|CP001095.1_prot_ACJ51233.1_9799.8 433 1 0 1 433 1 433 1.570002e-
318

852.0

AP010889.1_104Blon_0105Ure-
ase

lcl|CP001095.1_prot_ACJ51234.1_98100.0 294 0 0 1 294 1 294 1.660000e-
195

530.0

AP010889.1_105Blon_0106Ure-
ase

lcl|CP001095.1_prot_ACJ51235.1_99100.0 371 0 0 1 371 1 371 1.930000e-
267

718.0

AP010889.1_106Blon_0107Ure-
ase

lcl|CP001095.1_prot_ACJ51236.1_100100.0 257 0 0 49 305 14 270 3.000000e-
186

506.0

AP010889.1_107Blon_0108Ure-
ase

lcl|CP001095.1_prot_ACJ51237.1_101100.0 235 0 0 1 235 2 236 2.300000e-
166

451.0

1.6 Expected output

InStrain produces a variety of output in the IS folder depending on which operations are run. Generally, output that is
meant for human eyes to be easily interpretable is located in the output folder.

1.6.1 inStrain profile

A typical run of inStrain will yield the following files in the output folder:

scaffold_info.tsv

This gives basic information about the scaffolds in your sample at the highest allowed level of read identity.

1.6. Expected output 57

inStrain, Release 1.0.0

Table 7: scaffold_info.tsv
scaf-
fold

lengthcov-
er-
age

breadthnucl_diversitycov-
er-
age_median

cov-
er-
age_std

cov-
er-
age_SEM

breadth_minCovbreadth_expectednucl_diversity_mediannucl_diversity_rarefiednucl_diversity_rarefied_medianbreadth_rarefiedco-
nANI_reference

popANI_referenceSNS_countSNV_countdi-
ver-
gent_site_count

con-
sen-
sus_divergent_sites

pop-
u-
la-
tion_divergent_sites

N5_271_010G1_scaffold_1001148 1.898083623693380.97648083623693380.0 2 1.03723188633903680.0306262730609328620.0182926829268292670.81288050204510090.0 0.0 1.0 1.0 0 0 0 0 0
N5_271_010G1_scaffold_1021144 2.3889860139860140.99562937062937060.0036781608373269712 1.30420957219152480.0385766284508984660.076048951048951070.87869832451004350.0 0.0 1.0 1.0 0 0 0 0 0
N5_271_010G1_scaffold_1011148 1.74390243902439020.95993031358885022 0.87289184419750710.0257738161785703580.0 0.7855901382035807 0.0 0.0 0.0 0 00 0 0
N5_271_010G1_scaffold_1031142 2.0394045534150610.99387040280210160.0 2 1.12883973843747580.033418693502869440.04028021015

scaffold The name of the scaffold in the input .fasta file

length Full length of the scaffold in the input .fasta file

coverage The average depth of coverage on the scaffold. If half the bases in a scaffold have 5 reads on them, and the
other half have 10 reads, the coverage of the scaffold will be 7.5

breadth The percentage of bases in the scaffold that are covered by at least a single read. A breadth of 1 means that
all bases in the scaffold have at least one read covering them

nucl_diversity The mean nucleotide diversity of all bases in the scaffold that have a nucleotide diversity value cal-
culated. So if only 1 base on the scaffold meets the minimum coverage to calculate nucleotide diversity, the
nucl_diversity of the scaffold will be the nucleotide diversity of that base. Will be blank if no positions have a
base over the minimum coverage.

coverage_median The median depth of coverage value of all bases in the scaffold, included bases with 0 coverage

coverage_std The standard deviation of all coverage values

coverage_SEM The standard error of the mean of all coverage values (calculated using scipy.stats.sem)

breadth_minCov The percentage of bases in the scaffold that have at least min_cov coverage (e.g. the percentage of
bases that have a nucl_diversity value and meet the minimum sequencing depth to call SNVs)

breadth_expected expected breadth; this tells you the breadth that you should expect if reads are evenly distributed
along the genome, given the reported coverage value. Based on the function breadth = -1.000 * e^(0.883 *
coverage) + 1.000. This is useful to establish whether or not the scaffold is actually in the reads, or just a
fraction of the scaffold. If your coverage is 10x, the expected breadth will be ~1. If your actual breadth is
significantly lower then the expected breadth, this means that reads are mapping only to a specific region of
your scaffold (transposon, prophage, etc.)

nucl_diversity_median The median nucleotide diversity value of all bases in the scaffold that have a nucleotide
diversity value calculated

nucl_diversity_rarefied The average nucleotide diversity among positions that have at least
--rarefied_coverage (50x by default). These values are also calculated by randomly subsetting
the reads at that position to --rarefied_coverage reads

nucl_diversity_rarefied_median The median rarefied nucleotide diversity (similar to that described above)

breadth_rarefied The percentage of bases in a scaffold that have at least --rarefied_coverage

conANI_reference The conANI between the reads and the reference genome

popANI_reference The popANI between the reads and the reference genome

SNS_count The total number of SNSs called on this scaffold

SNV_count The total number of SNVs called on this scaffold

divergent_site_count The total number of divergent sites called on this scaffold

58 Chapter 1. Contents

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.sem.html

inStrain, Release 1.0.0

consensus_divergent_sites The total number of divergent sites in which the reads have a different consensus al-
lele than the reference genome. These count as “differences” in the conANI_reference calculation, and
breadth_minCov * length counts as the denominator.

population_divergent_sites The total number of divergent sites in which the reads do not have the reference genome
base as any allele at all (major or minor). These count as “differences” in the popANI_reference calculation,
and breadth_minCov * length counts as the denominator.

mapping_info.tsv

This provides an overview of the number of reads that map to each scaffold, and some basic metrics about their quality.
The header line (starting with #; not shown in the table below) describes the parameters that were used to filter the
reads

Table 8: mapping_info.tsv
scaf-
fold

pass_pairing_filterfil-
tered_pairs

me-
dian_insert

mean_PIDpass_min_insertun-
fil-
tered_reads

un-
fil-
tered_pairs

pass_min_read_anifil-
tered_priority_reads

un-
fil-
tered_singletons

mean_insert_distancepass_min_mapqmean_mistmachesmean_mapq_scoreun-
fil-
tered_priority_reads

pass_max_insertfil-
tered_singletons

mean_pair_length

all_scaffolds228869435 318.759984269859330.94232829626474422804.071399228869499.00 25627322.184960237699922886.014.32596347111771517.168967927990910 22828.00 255.52
N5_271_010G1_scaffold_1432 346 373.0 0.9719013034762376432.0 959 432 346.0 0 95 373.72222222222223432.0 7.64351851851851733.0300925925925950 432.0 0 274.7106481481
N5_271_010G1_scaffold_0741 460 389.0 0.9643004762700924740.0 1841 741 461.0 0 359 387.94466936572195741.0 10.236167341430526.5371120107962180 741.0 0 285.5033738191
N5_271_010G1_scaffold_2348 252 369.5 0.965446218901576347.0 865 348 253.0 0 169 349.0172413793104348.0 8.22701149425287431.5574712643678130 347.0 0 243.3103448275
N5_271_010G1_scaffold_3301 205 367.0 0.9639376512009891301.0 1088 301 205.0 0 486 327.81395348837214301.0 8.7076411960132929.0897009966777450 300.0 0 251.2624584717
N5_271_010G1_scaffold_4213 153 389.0 0.9649427929020106213.0 502 213 153.0 0 76 372.3896713615024213.0 9.2769953051643230.704225352112680 213.0 0 269.2300469483
N5_271_010G1_scaffold_5134 114 366.0 0.977820509122326134.0 349 134 116.0 0 81 376.4552238805969134.0 5.16417910447761237.611940298507460 132.0 0 246.8059701492
N5_271_010G1_scaffold_6140 130 384.5 0.9813174696928879140.0 316 140 130.0 0 36 372.45140.0 4.86428571428571438.435714285714280 140.0 0 261.3071428571429

scaffold The name of the scaffold in the input .fasta file. For the top row this will read all_scaffolds, and it has
the sum of all rows.

pass_pairing_filter The number of individual reads that pass the selecting pairing filter (only paired reads will pass
this filter by default)

filtered_pairs The number of pairs of reads that pass all cutoffs

median_insert Among all pairs of reads mapping to this scaffold, the median insert distance.

mean_PID Among all pairs of reads mapping to this scaffold, the average percentage ID of both reads in the pair to
the reference .fasta file

pass_min_insert The number of pairs of reads mapping to this scaffold that pass the minimum insert size cutoff

unfiltered_reads The raw number of reads that map to this scaffold

unfiltered_pairs The raw number of pairs of reads that map to this scaffold. Only paired reads are used by inStrain

pass_min_read_ani The number of pairs of reads mapping to this scaffold that pass the min_read_ani cutoff

filtered_priority_reads The number of priority reads that pass the rest of the filters (will only be non-0 if a priority
reads input file is provided)

unfiltered_singletons The number of reads detected in which only one read of the pair is mapped

mean_insert_distance Among all pairs of reads mapping to this scaffold, the mean insert distance. Note that the
insert size is measured from the start of the first read to the end of the second read (2 perfectly overlapping 50bp
reads will have an insert size of 50bp)

pass_min_mapq The number of pairs of reads mapping to this scaffold that pass the minimum mapQ score cutoff

mean_mistmaches Among all pairs of reads mapping to this scaffold, the mean number of mismatches

1.6. Expected output 59

inStrain, Release 1.0.0

mean_mapq_score Among all pairs of reads mapping to this scaffold, the average mapQ score

unfiltered_priority_reads The number of reads that pass the pairing filter because they were part of the
priority_reads input file (will only be non-0 if a priority reads input file is provided).

pass_max_insert The number of pairs of reads mapping to this scaffold that pass the maximum insert size cutoff- that
is, their insert size is less than 3x the median insert size of all_scaffolds. Note that the insert size is measured
from the start of the first read to the end of the second read (2 perfectly overlapping 50bp reads will have an
insert size of 50bp)

filtered_singletons The number of reads detected in which only one read of the pair is mapped AND which make it
through to be considered. This will only be non-0 if the filtering settings allows non-paired reads

mean_pair_length Among all pairs of reads mapping to this scaffold, the average length of both reads in the pair
summed together

Warning: Adjusting the pairing filter will result in odd values for the “filtered_pairs” column; this column reports
the number of pairs AND singletons that pass the filters. To calculate the true number of filtered pairs, use the
formula filtered_pairs - filtered_singletons

SNVs.tsv

This describes the SNVs and SNSs that are detected in this mapping. While we should refer to these mutations as
divergent sites, sometimes SNV is used to refer to both SNVs and SNSs

Warning: inStrain reports 0-based values for “position”. The first base in a scaffold will be position “0”, second
based position “1”, etc.

Table 9: SNVs.tsv
scaf-
fold

po-
si-
tion

po-
si-
tion_coverage

al-
lele_count

ref_basecon_basevar_baseref_freqcon_freqvar_freqA C T G gene mu-
ta-
tion

mu-
ta-
tion_type

cryp-
tic

class

N5_271_010G1_scaffold_120174 5 2 C C A 0.6 0.6 0.4 2 3 0 0 I False SNV
N5_271_010G1_scaffold_120195 6 1 T C A 0.0 1.0 0.0 0 6 0 0 I False SNS
N5_271_010G1_scaffold_120411 8 2 A A C 0.75 0.75 0.25 6 2 0 0 N5_271_010G1_scaffold_120_1N:V163GN False SNV
N5_271_010G1_scaffold_120426 9 2 G G T 0.77777777777777780.77777777777777780.22222222222222220 0 2 7 N5_271_010G1_scaffold_120_1N:S178YN False SNV
N5_271_010G1_scaffold_120481 6 2 C T C 0.33333333333333330.66666666666666660.33333333333333330 2 4 0 N5_271_010G1_scaffold_120_1N:D233NN False con_SNV
N5_271_010G1_scaffold_120484 6 2 G A G 0.33333333333333330.66666666666666660.33333333333333334 0 0 2 N5_271_010G1_scaffold_120_1N:P236SN False con_SNV
N5_271_010G1_scaffold_120488 5 1 T C T 0.2 0.8 0.2 0 4 1 0 N5_271_010G1_scaffold_120_1S:240 S False SNS
N5_271_010G1_scaffold_120811 5 1 T A T 0.2 0.8 0.2 4 0 1 0 N5_271_010G1_scaffold_120_1N:N563YN False SNS
N5_271_010G1_scaffold_120897 7 2 G G T 0.71428571428571430.71428571428571430.28571428571428570 0 2 5 I False SNV

See the module_descriptions for what constitutes a SNP (what makes it into this table)

scaffold The scaffold that the SNV is on

position The genomic position of the SNV

position_coverage The number of reads detected at this position

allele_count The number of bases that are detected above background levels (according to the null model. An al-
lele_count of 0 means no bases are supported by the reads, an allele_count of 1 means that only 1 base is
supported by the reads, an allele_count of 2 means two bases are supported by the reads, etc.

60 Chapter 1. Contents

inStrain, Release 1.0.0

ref_base The reference base in the .fasta file at that position

con_base The consensus base (the base that is supported by the most reads)

var_base Variant base; the base with the second most reads

ref_freq The fraction of reads supporting the ref_base

con_freq The fraction of reds supporting the con_base

var_freq The fraction of reads supporting the var_base

A, C, T, and G The number of mapped reads encoding each of the bases

gene If a gene file was included, this column will be present listing if the SNV is in the coding sequence of a gene

mutation Short-hand code for the amino acid switch. If synonymous, this will be S: + the position. If nonsynony-
mous, this will be N: + the old amino acid + the position + the new amino acid. NOTE - the position of the
amino acid is always calculated from left to right on the genome file, whether or not it’s the forward or reverse
strand. Codons are calculated correctly (considering strandedness), this only impacts the reported “position” in
this column. I know this is weird behavior and it will change in future inStrain versions.

mutation_type What type of mutation this is. N = nonsynonymous, S = synonymous, I = intergenic, M = there are
multiple genes with this base so you cant tell

cryptic If an SNV is cryptic, it means that it is detected when using a lower read mismatch threshold, but becomes
undetected when you move to a higher read mismatch level. See “dealing with mm” in the advanced_use section
for more details on what this means.

class The classification of this divergent site. The options are SNS (meaning allele_count is 1 and con_base does
not equal ref_base), SNV (meaning allele_count is > 1 and con_base does equal ref_base), con_SNV (meaning
allele_count is > 1, con_base does not equal ref_base, and ref_base is present in the reads; these count as dif-
ferences in conANI calculations), pop_SNV (meaning allele_count is > 1, con_base does not equal ref_base,
and ref_base is not present in the reads; these count as differences in popANI and conANI calculations), Di-
vergentSite (meaning allele count is 0), and AmbiguousReference (meaning the ref_base is not A, C, T, or
G)

linkage.tsv

This describes the linkage between pairs of SNPs in the mapping that are found on the same read pair at least min_snp
times.

Warning: inStrain reports 0-based values for “position”. The first base in a scaffold will be position “0”, second
based position “1”, etc.

1.6. Expected output 61

inStrain, Release 1.0.0

Table 10: linkage.tsv
scaf-
fold

po-
si-
tion_A

po-
si-
tion_B

dis-
tance

r2 d_primer2_normalizedd_prime_normalizedal-
lele_A

al-
lele_a

al-
lele_B

al-
lele_b

countabcountAbcountaBcountABto-
tal

N5_271_010G1_scaffold_9358 59 1 0.0217391304347827021.0 0.0311418685121107251.0 C T G A 0 3 4 20 27
N5_271_010G1_scaffold_9358 70 12 0.0128205128205128511.0 C T T A 0 2 4 22 28
N5_271_010G1_scaffold_9358 80 22 0.0167224080267558141.0 0.0058479532163742711.0 C T G A 0 2 5 21 28
N5_271_010G1_scaffold_9358 84 26 0.76521739130434751.00000000000000020.62962962962962971.0 C T G C 4 0 1 22 27
N5_271_010G1_scaffold_9358 101 43 0.009070294784580671.0 C T C A 0 2 2 19 23
N5_271_010G1_scaffold_9358 126 68 0.017543859649122571.0 0.0027700831024930751.0 C T A T 0 2 3 16 21
N5_271_010G1_scaffold_9358 133 75 0.0083333333333333521.0 C T G T 0 1 3 17 21
N5_271_010G1_scaffold_9359 70 11 0.0108695652173914131.0 0.027777777777777791.0 G A T A 0 2 3 21 26
N5_271_010G1_scaffold_9359 80 21 0.64102564102563971.0 1.0 1.0 G A G A 2 0 1 25 28

Linkage is used primarily to determine if organisms are undergoing horizontal gene transfer or not. It’s calculated for
pairs of SNPs that can be connected by at least min_snp reads. It’s based on the assumption that each SNP has two
alleles (for example, a A and b B). This all gets a bit confusing and has a large amount of literature around each of
these terms, but I’ll do my best to briefly explain what’s going on

scaffold The scaffold that both SNPs are on

position_A The position of the first SNP on this scaffold

position_B The position of the second SNP on this scaffold

distance The distance between the two SNPs

r2 This is the r-squared linkage metric. See below for how it’s calculated

d_prime This is the d-prime linkage metric. See below for how it’s calculated

r2_normalized, d_prime_normalized These are calculated by rarefying to min_snp number of read pairs. See
below for how it’s calculated

allele_A One of the two bases at position_A

allele_a The other of the two bases at position_A

allele_B One of the bases at position_B

allele_b The other of the two bases at position_B

countab The number of read-pairs that have allele_a and allele_b

countAb The number of read-pairs that have allele_A and allele_b

countaB The number of read-pairs that have allele_a and allele_B

countAB The number of read-pairs that have allele_A and allele_B

total The total number of read-pairs that have have information for both position_A and position_B

Python code for the calculation of these metrics:

freq_AB = float(countAB) / total
freq_Ab = float(countAb) / total
freq_aB = float(countaB) / total
freq_ab = float(countab) / total

freq_A = freq_AB + freq_Ab
freq_a = freq_ab + freq_aB

(continues on next page)

62 Chapter 1. Contents

inStrain, Release 1.0.0

(continued from previous page)

freq_B = freq_AB + freq_aB
freq_b = freq_ab + freq_Ab

linkD = freq_AB - freq_A * freq_B

if freq_a == 0 or freq_A == 0 or freq_B == 0 or freq_b == 0:
r2 = np.nan

else:
r2 = linkD*linkD / (freq_A * freq_a * freq_B * freq_b)

linkd = freq_ab - freq_a * freq_b

calc D-prime
d_prime = np.nan
if (linkd < 0):

denom = max([(-freq_A*freq_B),(-freq_a*freq_b)])
d_prime = linkd / denom

elif (linkD > 0):
denom = min([(freq_A*freq_b), (freq_a*freq_B)])
d_prime = linkd / denom

################
calc rarefied

rareify = np.random.choice(['AB','Ab','aB','ab'], replace=True, p=[freq_AB,freq_Ab,
→˓freq_aB,freq_ab], size=min_snp)
freq_AB = float(collections.Counter(rareify)['AB']) / min_snp
freq_Ab = float(collections.Counter(rareify)['Ab']) / min_snp
freq_aB = float(collections.Counter(rareify)['aB']) / min_snp
freq_ab = float(collections.Counter(rareify)['ab']) / min_snp

freq_A = freq_AB + freq_Ab
freq_a = freq_ab + freq_aB
freq_B = freq_AB + freq_aB
freq_b = freq_ab + freq_Ab

linkd_norm = freq_ab - freq_a * freq_b

if freq_a == 0 or freq_A == 0 or freq_B == 0 or freq_b == 0:
r2_normalized = np.nan

else:
r2_normalized = linkd_norm*linkd_norm / (freq_A * freq_a * freq_B * freq_b)

calc D-prime
d_prime_normalized = np.nan
if (linkd_norm < 0):

denom = max([(-freq_A*freq_B),(-freq_a*freq_b)])
d_prime_normalized = linkd_norm / denom

elif (linkd_norm > 0):
denom = min([(freq_A*freq_b), (freq_a*freq_B)])
d_prime_normalized = linkd_norm / denom

rt_dict = {}
for att in ['r2', 'd_prime', 'r2_normalized', 'd_prime_normalized', 'total', 'countAB
→˓', \ (continues on next page)

1.6. Expected output 63

inStrain, Release 1.0.0

(continued from previous page)

'countAb', 'countaB', 'countab', 'allele_A', 'allele_a', \
'allele_B', 'allele_b']:

rt_dict[att] = eval(att)

gene_info.tsv

This describes some basic information about the genes being profiled

Warning: inStrain reports 0-based values for “position”, including the “start” and “stop” in this table. The first
base in a scaffold will be position “0”, second based position “1”, etc.

Table 11: gene_info.tsv
scaf-
fold

gene gene_lengthcov-
er-
age

breadthbreadth_minCovnucl_diversitystart end di-
rec-
tion

par-
tial

dNdS_substitutionspNpS_variantsSNV_countSNV_S_countSNV_N_countSNS_countSNS_S_countSNS_N_countdi-
ver-
gent_site_count

N5_271_010G1_scaffold_0N5_271_010G1_scaffold_0_1141.00.70921985815602840.70921985815602840.0 143 283 -1 False 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N5_271_010G1_scaffold_0N5_271_010G1_scaffold_0_2219.04.8493150684931511.0 0.456621004566209960.0123122167587280692410 2628 -1 False 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N5_271_010G1_scaffold_0N5_271_010G1_scaffold_0_3282.07.5283687943262411.0 0.96099290780141840.008058355303268153688 3969 -1 False 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N5_271_010G1_scaffold_1N5_271_010G1_scaffold_1_1336.02.72619047619047631.0 0.06250.0 0 335 -1 False 0.0 0.0 0.0 0.0 0.0 0.0 0.0
N5_271_010G1_scaffold_1N5_271_010G1_scaffold_1_2717.07.7140864714086471.0 0.89260808926080890.011336830817162968378 1094 -1 False 0.5542035398230089.0 2.0 6.0 0.0 0.0 0.0 9.0
N5_271_010G1_scaffold_1N5_271_010G1_scaffold_1_3114.013.1052631578947351.0 1.0 0.0162919864319918081051 1164 -1 False 0.39568345323740994.0 1.0 2.0 0.0 0.0 0.0 4.0
N5_271_010G1_scaffold_1N5_271_010G1_scaffold_1_4111.011.3423423423423421.0 1.0 0.021028067614581091164 1274 -1 False 5.0 0.0 5.0 0.0 0.0 0.0 5.0
N5_271_010G1_scaffold_1N5_271_010G1_scaffold_1_5174.09.0574712643678161.0 1.0 0.0068960874930195091476 1649 -1 False 0.0 2.0 2.0 0.0 0.0 0.0 0.0 2.0
N5_271_010G1_scaffold_1N5_271_010G1_scaffold_1_6174.06.1954022988505761.0 0.74137931034482760.0286986490552739761656 1829 -1 False 0.57906976744186014.0 1.0 3.0 0.0 0.0 0.0 4.0

scaffold Scaffold that the gene is on

gene Name of the gene being profiled

gene_length Length of the gene in nucleotides

breadth The number of bases in the gene that have at least 1x coverage

breadth_minCov The number of bases in the gene that have at least min_cov coverage

nucl_diversity The mean nucleotide diversity of all bases in the gene that have a nucleotide diversity value calculated.
So if only 1 base on the scaffold meets the minimum coverage to calculate nucleotide diversity, the nucl_diversity
of the scaffold will be the nucleotide diversity of that base. Will be blank if no positions have a base over the
minimum coverage.

start Start of the gene (position on scaffold; 0-indexed)

end End of the gene (position on scaffold; 0-indexed)

direction Direction of the gene (based on prodigal call). If -1, means the gene is not coded in the direction expressed
by the .fasta file

partial If True this is a partial gene; based on not having partial=00 in the record description provided by Prodigal

dNdS_substitutions The dN/dS of SNSs detected in this gene. Will be blank if 0 N and/or 0 S substitutions are detected

pNpS_variants The pN/pS of SNVs detected in this gene. Will be blank if 0 N and/or 0 S SNVs are detected

SNV_count Total number of SNVs detected in this gene

SNV_S_count Number of synonymous SNVs detected in this gene

64 Chapter 1. Contents

inStrain, Release 1.0.0

SNV_N_count Number of non-synonymous SNVs detected in this gene

SNS_count Total number of SNSs detected in this gens

SNS_S_count Number of synonymous SNSs detected in this gens

SNS_N_count Number of non-synonymous SNSs detected in this gens

divergent_site_count Number of divergent sites detected in this gens

genome_info.tsv

Describes many of the above metrics on a genome-by-genome level, rather than a scaffold-by-scaffold level.

Table 12: genome_info.tsv
genomecov-

er-
age

breadthnucl_diversitylengthtrue_scaffoldsde-
tected_scaffolds

cov-
er-
age_median

cov-
er-
age_std

cov-
er-
age_SEM

breadth_minCovbreadth_expectednucl_diversity_rarefiedco-
nANI_reference

popANI_referenceiRepiRep_GC_correctedlinked_SNV_countSNV_distance_meanr2_meand_prime_meancon-
sen-
sus_divergent_sites

pop-
u-
la-
tion_divergent_sites

SNS_countSNV_countfil-
tered_read_pair_cou

nt reads_unfiltered_pairsreads_mean_PIDreads_unfiltered_readsdi-
ver-
gent_site_count

fobin.fasta132.077702702702680.99746621621621620.03579944902622589411841 1 113 114.965901984928323.66684280184974080.98226351351351361.0 0.0343199077390820.979363714531
38440.9939810834049873False1064.0120.482142857142860.077814708986197590.871078869547638524 7 7 97 926 59910.923944092415743619260104
maxbin2.maxbin.001.fasta6.56372430380129850.89409157603352040.007116301715134402264436166 166 5 9.4754903039239180.0197049304587699480.50802462599646040.996959607196570.0002
84972340661952950.9972011314574960.9990248622897128False777.080.731016731016740.29796796850640110.9518999449773424376 131 127 1246736893090.97833160242489242
52811373

genome The name of the genome being profiled. If all scaffolds were a single genome, this will read “all_scaffolds”

coverage Average coverage depth of all scaffolds of this genome

breadth The breadth of all scaffolds of this genome

nucl_diversity The average nucleotide diversity of all scaffolds of this genome

length The full length of this genome across all scaffolds

true_scaffolds The number of scaffolds present in this genome based off of the scaffold-to-bin file

detected_scaffolds The number of scaffolds with at least a single read-pair mapping to them

coverage_median The median coverage among all bases in the genome

coverage_std The standard deviation of all coverage values

coverage_SEM The standard error of the mean of all coverage values (calculated using scipy.stats.sem)

breadth_minCov The percentage of bases in the scaffold that have at least min_cov coverage (e.g. the percentage of
bases that have a nucl_diversity value and meet the minimum sequencing depth to call SNVs)

breadth_expected This tells you the breadth that you should expect if reads are evenly distributed along the genome,
given the reported coverage value. Based on the function breadth = -1.000 * e^(0.883 * coverage) + 1.000. This
is useful to establish whether or not the scaffold is actually in the reads, or just a fraction of the scaffold. If your
coverage is 10x, the expected breadth will be ~1. If your actual breadth is significantly lower then the expected
breadth, this means that reads are mapping only to a specific region of your scaffold (transposon, prophage, etc.)

nucl_diversity_rarefied The average nucleotide diversity among positions that have at least
--rarefied_coverage (50x by default). These values are also calculated by randomly subsetting
the reads at that position to --rarefied_coverage reads

1.6. Expected output 65

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.sem.html

inStrain, Release 1.0.0

conANI_reference The conANI between the reads and the reference genome

popANI_reference The popANI between the reads and the reference genome

iRep The iRep value for this genome (if it could be successfully calculated)

iRep_GC_corrected A True / False value of whether the iRep value was corrected for GC bias

linked_SNV_count The number of divergent sites that could be linked in this genome

SNV_distance_mean Average distance between linked divergent sites

r2_mean Average r2 between linked SNVs (see explanation of linkage.tsv above for more info)

d_prime_mean Average d prime between linked SNVs (see explanation of linkage.tsv above for more info)

consensus_divergent_sites The total number of divergent sites in which the reads have a different consensus al-
lele than the reference genome. These count as “differences” in the conANI_reference calculation, and
breadth_minCov * length counts as the denominator.

population_divergent_sites The total number of divergent sites in which the reads do not have the reference genome
base as any allele at all (major or minor). These count as “differences” in the popANI_reference calculation,
and breadth_minCov * length counts as the denominator.

SNS_count The total number of SNSs called on this genome

SNV_count The total number of SNVs called on this genome

filtered_read_pair_count The total number of read pairs that pass filtering and map to this genome

reads_unfiltered_pairs The total number of pairs, filtered or unfiltered, that map to this genome

reads_mean_PID The average ANI of mapped read pairs to the reference genome for this genome

reads_unfiltered_reads The total number of reads, filtered or unfiltered, that map to this genome

divergent_site_count The total number of divergent sites called on this genome

1.6.2 inStrain parse_annotations

A typical run of inStrain parse_gene_annotations will yield the following files in the output folder. For more informa-
tion, see User Manual

LongFormData.csv

All of the annotation information a very long table

66 Chapter 1. Contents

inStrain, Release 1.0.0

Table 13: LongFormData.csv
sam-
ple

anno genomes genes bases

2bag10_1.bamK03737{‘REFINED_METABAT215_TOP10_CONTIGS_1500_ASSEMBLY_K77_MERGED__Hadza_MoBio_hadza-
E-H_A_23_1707.16.fa’}

1 6666

2bag10_1.bamK06973{‘REFINED_METABAT215_TOP10_CONTIGS_1500_ASSEMBLY_K77_MERGED__Hadza_MoBio_hadza-
E-H_A_23_1707.16.fa’}

1 1068

2bag10_1.bamK04066{‘REFINED_METABAT215_TOP10_CONTIGS_1500_ASSEMBLY_K77_MERGED__Hadza_MoBio_hadza-
E-H_A_23_1707.16.fa’, ‘Bifidobacterium_longum_subsp_infantis_ATCC_15697.fna’}

2 195761

2bag10_1.bamK15558{‘REFINED_METABAT215_TOP10_CONTIGS_1500_ASSEMBLY_K77_MERGED__Hadza_MoBio_hadza-
E-H_A_23_1707.16.fa’, ‘Bifidobacterium_longum_subsp_infantis_ATCC_15697.fna’}

96 10748749

2bag10_1.bamK19762{‘REFINED_METABAT215_TOP10_CONTIGS_1500_ASSEMBLY_K77_MERGED__Hadza_MoBio_hadza-
E-H_A_23_1707.16.fa’, ‘Bifidobacterium_longum_subsp_infantis_ATCC_15697.fna’}

97 10920075

2bag10_1.bam3000025{‘REFINED_METABAT215_TOP10_CONTIGS_1500_ASSEMBLY_K77_MERGED__Hadza_MoBio_hadza-
E-H_A_23_1707.16.fa’, ‘Bifidobacterium_longum_subsp_infantis_ATCC_15697.fna’}

2 168916

2bag10_1.bamK18888{‘REFINED_METABAT215_TOP10_CONTIGS_1500_ASSEMBLY_K77_MERGED__Hadza_MoBio_hadza-
E-H_A_23_1707.16.fa’, ‘Bifidobacterium_longum_subsp_infantis_ATCC_15697.fna’}

3 504008

2bag10_1.bamK20386{‘REFINED_METABAT215_TOP10_CONTIGS_1500_ASSEMBLY_K77_MERGED__Hadza_MoBio_hadza-
E-H_A_23_1707.16.fa’, ‘Bifidobacterium_longum_subsp_infantis_ATCC_15697.fna’}

98 11007871

2bag10_1.bamK07979{‘REFINED_METABAT215_TOP10_CONTIGS_1500_ASSEMBLY_K77_MERGED__Hadza_MoBio_hadza-
E-H_A_23_1707.16.fa’}

1 742

sample The sample this row refers to (based on the name of the .bam file used to create the inStrain profile)

anno The annotation this row refers to (based on the input annotation table)

genomes The specific genomes that have this particular annotation. Represented as a python set

genes The total number of genes detected with this annotation in this sample

bases The total number of base-pairs mapped to all genes with this annotation in this sample

SampleAnnotationTotals.csv

Totals for each sample. Used to generate the _fraction tables enumerated below.

Table 14: SampleAnnotationTotals.csv
sample de-

tected_genes
de-
tected_genomes

bases_mapped_to_genesde-
tected_annotations

de-
tected_genes_with_anno

2bag10_1.bam 2625 2 222405987 3302 1677
2bag10_2.bam 20909 10 2418511040 32225 15513

sample The sample this row refers to (based on the name of the .bam file used to create the inStrain profile)

detected_genes The total number of genes detected in this sample after passing the set filters

detected_genomes The total number of genomes detected in this sample after passing the set filters

bases_mapped_to_genes The total number of bases mapped to detected genes. See ParsedGeneAnno_bases.csv
below for more info

detected_annotations The total number of annotations detected; this can be higher than detected_genes_with_anno
if some genes have multiple annotations

detected_genes_with_anno The total number of genes detected with at least one annotation

1.6. Expected output 67

inStrain, Release 1.0.0

ParsedGeneAnno_*.csv

There are a total of 6 tables like this generated in the output folder, each looking like the following:

Table 15: ParsedGeneAnno_bases.csv
sample 3000005 3000024 3000025 3000026 3000027 3000074 3000118 3000165 3000166
2bag10_1.bam 131097 1286827 168916 1656 0 0 0 0 0
2bag10_2.bam 104013 5016854 955645 2552 633275 1034042 95617 409295 541951

In each case the column sample is the sample the row refers to (based on the name of the .bam file used to create the
inStrain profile), and all other columns are annotations from the input annotation_table provides. The number values
differ depending on the individual output table being analyzed. Below you can find descriptions on what the numbers
refer to:

ParsedGeneAnno_bases.csv The total number of base pairs mapped to all genes with this annotation. The number
of base pairs mapped for each gene with this annotation is calculated as the gene length * the coverage of the
gene, and the number reported is the sum of this value of all genes

ParsedGeneAnno_bases_fraction.csv The values in ParsedGeneAnno_bases.csv divided by the total number of
bases mapped to all detected genes (the value bases_mapped_to_genes reported in SampleAnnotationTotals.csv)

ParsedGeneAnno_genes.csv The total number of detected genes with this annotation

ParsedGeneAnno_genes_fraction.csv The values in ParsedGeneAnno_genes.csv divided by the total number of
genes detected (the value detected_genes reported in SampleAnnotationTotals.csv)

ParsedGeneAnno_genomes.csv The total number of genomes with at least one detected gene with this annotation

ParsedGeneAnno_genomes_fraction.csv The values in ParsedGeneAnno_genomes.csv divided by the total number
of genomes detected (the value detected_genomes reported in SampleAnnotationTotals.csv)

1.6.3 inStrain compare

A typical run of inStrain will yield the following files in the output folder:

comparisonsTable.tsv

Summarizes the differences between two inStrain profiles on a scaffold by scaffold level

68 Chapter 1. Contents

inStrain, Release 1.0.0

Table 16: comparisonsTable.tsv
scaffold name1 name2 cov-

er-
age_overlap

com-
pared_bases_count

per-
cent_genome_compared

length con-
sen-
sus_SNPs

pop-
ula-
tion_SNPs

popANIco-
nANI

N5_271_010G1_scaffold_98N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

1.0 61 0.052905464006938421153 0 0 1.0 1.0

N5_271_010G1_scaffold_133N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

1.0 78 0.07414448669201521052 0 0 1.0 1.0

N5_271_010G1_scaffold_144N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

1.0 172 0.167152575315840661029 0 0 1.0 1.0

N5_271_010G1_scaffold_158N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

1.0 36 0.0357497517378351641007 0 0 1.0 1.0

N5_271_010G1_scaffold_57N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

1.0 24 0.01832061068702291310 0 0 1.0 1.0

N5_271_010G1_scaffold_139N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

1.0 24 0.0231213872832369971038 0 0 1.0 1.0

N5_271_010G1_scaffold_92N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

1.0 336 0.2869342442356961171 0 0 1.0 1.0

N5_271_010G1_scaffold_97N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

1.0 22 0.019014693171996541157 0 0 1.0 1.0

N5_271_010G1_scaffold_100N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

1.0 21 0.0182926829268292671148 0 0 1.0 1.0

scaffold The scaffold being compared

name1 The name of the first inStrain profile being compared

name2 The name of the second inStrain profile being compared

coverage_overlap The percentage of bases that are either covered or not covered in both of the profiles (covered = the
base is present at at least min_snp coverage). The formula is length(coveredInBoth) / length(coveredInEither).
If both scaffolds have 0 coverage, this will be 0.

compared_bases_count The number of considered bases; that is, the number of bases with at least min_snp coverage
in both profiles. Formula is length([x for x in overlap if x == True]).

percent_genome_compared The percentage of bases in the scaffolds that are covered by both. The formula is
length([x for x in overlap if x == True])/length(overlap). When ANI is np.nan, this must be 0. If both scaf-
folds have 0 coverage, this will be 0.

length The total length of the scaffold

consensus_SNPs The number of locations along the genome where both samples have the base at >= 5x coverage,
and the consensus allele in each sample is different. Used to calculate conANI

population_SNPs The number of locations along the genome where both samples have the base at >= 5x coverage,
and no alleles are shared between either sample. Used to calculate popANI

1.6. Expected output 69

inStrain, Release 1.0.0

popANI The average nucleotide identity among compared bases between the two scaffolds, based on popula-
tion_SNPs. Calculated using the formula popANI = (compared_bases_count - population_SNPs) / com-
pared_bases_count

conNI The average nucleotide identity among compared bases between the two scaffolds, based on consensus_SNPs.
Calculated using the formula conANI = (compared_bases_count - consensus_SNPs) / compared_bases_count

pairwise_SNP_locations.tsv

Warning: inStrain reports 0-based values for “position”. The first base in a scaffold will be position “0”, second
based position “1”, etc.

Lists the locations of all differences between profiles. Because it’s a big file, this will only be created is you include
the flag --store_mismatch_locations in your inStrain compare command.

Table 17: pairwise_SNP_locations.tsv
scaf-
fold

po-
si-
tion

name1name2con-
sen-
sus_SNP

pop-
u-
la-
tion_SNP

con_base_1ref_base_1var_base_1po-
si-
tion_coverage_1

A_1 C_1 T_1 G_1 con_base_2ref_base_2var_base_2po-
si-
tion_coverage_2

A_2 C_2 T_2 G_2

N5_271_010G1_scaffold_9823 N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G2.sorted.bam

True FalseG G A 10.0 3.0 0.0 0.0 7.0 A G G 6.0 3.0 0.0 0.0 3.0

N5_271_010G1_scaffold_11906 N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G2.sorted.bam

True FalseT T C 6.0 0.0 2.0 4.0 0.0 C T T 7.0 0.0 4.0 3.0 0.0

N5_271_010G1_scaffold_29436 N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G2.sorted.bam

True FalseC T T 6.0 0.0 3.0 3.0 0.0 T T C 7.0 0.0 3.0 4.0 0.0

N5_271_010G1_scaffold_140194 N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G2.sorted.bam

True FalseA A T 6.0 4.0 0.0 2.0 0.0 T A A 9.0 4.0 0.0 5.0 0.0

N5_271_010G1_scaffold_241608 N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G2.sorted.bam

True FalseG G A 8.0 2.0 0.0 0.0 6.0 A G G 6.0 5.0 0.0 0.0 1.0

N5_271_010G1_scaffold_112600 N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G2.sorted.bam

True FalseA G G 6.0 4.0 0.0 0.0 2.0

N5_271_010G1_scaffold_88497 N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G2.sorted.bam

True FalseA G G 5.0 3.0 0.0 0.0 2.0

N5_271_010G1_scaffold_531108 N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G2.sorted.bam

True FalseA A G 5.0 3.0 0.0 0.0 2.0 G A A 15.0 6.0 0.0 0.0 9.0

N5_271_010G1_scaffold_46710 N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G2.sorted.bam

True FalseA C C 6.0 4.0 2.0 0.0 0.0 C C A 6.0 2.0 4.0 0.0 0.0

scaffold The scaffold on which the difference is located

position The position where the difference is located (0-based)

70 Chapter 1. Contents

inStrain, Release 1.0.0

name1 The name of the first inStrain profile being compared

name2 The name of the second inStrain profile being compared

consensus_SNP A True / False column listing whether or not this difference counts towards conANI calculations

population_SNP A True / False column listing whether or not this difference counts towards popANI calculations

con_base_1 The consensus base of the profile listed in name1 at this position

ref_base_1 The reference base of the profile listed in name1 at this position (will be the same as ref_base_2)

var_base_1 The variant base of the profile listed in name1 at this position

position_coverage_1 The number of reads mapping to this position in name1

A_1, C_1, T_1, G_1 The number of mapped reads with each nucleotide in name1

con_base_2, ref_base_2, . . . The above columns are also listed for the name2 sample

genomeWide_compare.tsv

A genome-level summary of the differences detected by inStrain compare. Generated by running inStrain
genome_wide on the results of inStrain compare, or by providing an stb file to the original inStrain com-
pare command.

Table 18: genomeWide_compare.tsv
genomename1 name2 cover-

age_overlap
com-
pared_bases_count

con-
sen-
sus_SNPs

pop-
ula-
tion_SNPs

popANI co-
nANI

per-
cent_compared

all_scaffoldsN5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

1.0 100712 0 0 1.0 1.0 0.3605549091560011

all_scaffoldsN5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G1.sorted.bam

N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G2.sorted.bam

0.685293219815985571900 196 50.99993045897079280.99727399165507650.25740624720307886

all_scaffoldsN5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G2.sorted.bam

N5_271_010G1_scaffold_min1000.fa-
vs-
N5_271_010G2.sorted.bam

1.0 145663 0 0 1.0 1.0 0.5214821444553835

genome The genome being compared

name1 The name of the first inStrain profile being compared

name2 The name of the second inStrain profile being compared

coverage_overlap The percentage of bases that are either covered or not covered in both of the profiles (covered = the
base is present at at least min_snp coverage). The formula is length(coveredInBoth) / length(coveredInEither).
If both scaffolds have 0 coverage, this will be 0.

compared_bases_count The number of considered bases; that is, the number of bases with at least min_snp coverage
in both profiles. Formula is length([x for x in overlap if x == True]).

percent_genome_compared The percentage of bases in the scaffolds that are covered by both. The formula is
length([x for x in overlap if x == True])/length(overlap). When ANI is np.nan, this must be 0. If both scaf-
folds have 0 coverage, this will be 0.

length The total length of the genome

consensus_SNPs The number of locations along the genome where both samples have the base at >= 5x coverage,
and the consensus allele in each sample is different. Used to calculate conANI

1.6. Expected output 71

inStrain, Release 1.0.0

population_SNPs The number of locations along the genome where both samples have the base at >= 5x coverage,
and no alleles are shared between either sample. Used to calculate popANI

popANI The average nucleotide identity among compared bases between the two scaffolds, based on popula-
tion_SNPs. Calculated using the formula popANI = (compared_bases_count - population_SNPs) / com-
pared_bases_count

conNI The average nucleotide identity among compared bases between the two scaffolds, based on consensus_SNPs.
Calculated using the formula conANI = (compared_bases_count - consensus_SNPs) / compared_bases_count

strain_clusters.tsv

The result of clustering the pairwise comparison data provided in genomeWide_compare.tsv to generate strain-
level clusters. Performed using hierarchical clustering in the same manner as the program dRep; see the dRep docu-
mentation for some info on the oddities of hierarchical clustering

Table 19: genomeWide_compare.tsv
cluster sample genome
1_1 N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.sorted.bam fobin.fasta
1_1 N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G2.sorted.bam fobin.fasta
2_1 N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.sorted.bam maxbin2.maxbin.001.fasta
2_2 N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G2.sorted.bam maxbin2.maxbin.001.fasta

cluster The strain identity of this genome in this sample. Each “strain” assigned by the hierarchical clustering algo-
rithm will have a unique cluster. In the example table above strains of the genome fobin.fasta are the same
in both samples (they have the same “cluster” identities), but strains of the genome maxbin2.maxbin.001.
fasta are different in the two samples (they have different “cluster” identities).

sample The sample that the genome was detected in.

genome The genome that the cluster is referring to.

pooled_SNV_info.tsv, pooled_SNV_data.tsv, and pooled_SNV_data_keys.tsv

The tables pooled_SNV_info.tsv, pooled_SNV_data.tsv, and pooled_SNV_data_keys.tsv can be generated by inStrain
compare by providing .bam files to the inStrain compare command. See User Manual for more information.

Table 20: pooled_SNV_info.tsv
scaf-
fold

po-
si-
tion

depth A C T G ref_basecon_basevar_basesam-
ple_detections

sam-
ple_5x_detections

Di-
ver-
gentSite_count

SNS_countSNV_countcon_SNV_countpop_SNV_countsam-
ple_con_bases

N5_271_010G1_scaffold_1143 10 2 0 7 1 T T A 2 1 0 0 1 0 0 [‘T’]
N5_271_010G1_scaffold_11420 33 0 31 2 0 C C T 2 2 0 0 1 0 0 [‘C’]
N5_271_010G1_scaffold_11424 35 29 0 2 4 A A G 2 2 0 0 2 0 0 [‘A’]
N5_271_010G1_scaffold_11425 38 2 36 0 0 C C A 2 2 0 0 1 0 0 [‘C’]
N5_271_010G1_scaffold_11455 71 66 5 0 0 A A C 2 2 0 0 1 0 0 [‘A’]
N5_271_010G1_scaffold_11457 67 2 0 0 65 G G A 2 2 0 0 1 0 0 [‘G’]
N5_271_010G1_scaffold_11475 95 4 90 0 1 C C A 2 2 0 0 1 0 0 [‘C’]
N5_271_010G1_scaffold_11476 95 0 90 2 3 C C G 2 2 0 0 2 0 0 [‘C’]
N5_271_010G1_scaffold_11479 98 0 3 0 95 G G C 2 2 0 0 1 0 0 [‘G’]

This table has information about each SNV, summarized across all samples

scaffold The scaffold being analyzed

72 Chapter 1. Contents

https://drep.readthedocs.io/en/latest/choosing_parameters.html#oddities-of-hierarchical-clustering
https://drep.readthedocs.io/en/latest/choosing_parameters.html#oddities-of-hierarchical-clustering

inStrain, Release 1.0.0

position The position in the scaffold where the SNV is located (0-based)

depth The total number of reads mapping to this scaffold across samples

A The number of reads with A at this position in this scaffold across samples

C The number of reads with C at this position in this scaffold across samples

T The number of reads with T at this position in this scaffold across samples

G The number of reads with G at this position in this scaffold across samples

ref_base The reference base at this position in this scaffold across samples

con_base The consensus base (most common) at this position in this scaffold across samples

var_base The variant base (second most common) at this position in this scaffold across samples

sample_detections The number of samples in which this position at this scaffold has at least one read mapping to it

sample_5x_detections The number of samples in which this position at this scaffold has at least 5 reads mapping to
it

DivergentSite_count The number of samples with a divergent sites detected at this position

SNS_count The number of samples with a SNSs detected at this position

SNV_count The number of samples with a SNVs detected at this position

con_SNV_count The number of samples with consenus SNPs (conANI) detected at this position

pop_SNV_count The number of samples with population SNPs (popANI) detected at this position

sample_con_bases The number of different consensus bases at this position across all analyzed samples

Table 21: pooled_SNV_data.tsv
sample scaffold position A C T G
0 0 3 2 0 5 1
0 0 20 0 21 2 0
0 0 24 21 0 0 4
0 0 25 2 26 0 0
0 0 55 38 5 0 0
0 0 57 2 0 0 38
0 0 75 3 55 0 0
0 0 76 0 56 0 3
0 0 79 0 1 0 57

This table has information about each SNV in each sample. Because the table can be huge, names of scaffolds and
samples are listed as “keys” to be translated using the also-provided pooled_SNV_data_keys.tsv table

sample The key for the sample being analyzed (as detailed in the pooled_SNV_data_keys.tsv table below)

scaffold The key for the scaffold being analyzed (as detailed in the pooled_SNV_data_keys.tsv table below)

position The position in the scaffold where the SNV is located (0-based)

A,C,T,G The number of reads with this base in this sample in this scaffold at this position

1.6. Expected output 73

inStrain, Release 1.0.0

Table 22: pooled_SNV_data_keys.tsv
key sample scaffold
0 N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.sorted.bam N5_271_010G1_scaffold_114
1 N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G2.sorted.bam N5_271_010G1_scaffold_63
2 N5_271_010G1_scaffold_89
3 N5_271_010G1_scaffold_33
4 N5_271_010G1_scaffold_95
5 N5_271_010G1_scaffold_11
6 N5_271_010G1_scaffold_74
7 N5_271_010G1_scaffold_71
8 N5_271_010G1_scaffold_96

This table has “keys” needed to translate the pooled_SNV_data.tsv table

key The key in question. This is the number presented in the sample or scaffold column in the pooled_SNV_data.tsv
table above

sample The name of the sample with this key. For example: for the row with a 0 as the key, sample 0 in
pooled_SNV_data.tsv refers to the sample listed here

scaffold The name of the scaffold with this key. For example: for the row with a 0 as the key, scaffold 0 in
pooled_SNV_data.tsv refers to the sample listed here

1.6.4 inStrain plot

This is what the results of inStrain plot look like.

1) Coverage and breadth vs. read mismatches

Breadth of coverage (blue line), coverage depth (red line), and expected breadth of coverage given the depth of cover-
age (dotted blue line) versus the minimum ANI of mapped reads. Coverage depth continues to increase while breadth
of plateaus, suggesting that all regions of the reference genome are not present in the reads being mapped.

2) Genome-wide microdiversity metrics

SNV density, coverage, and nucleotide diversity. Spikes in nucleotide diversity and SNV density do not correspond
with increased coverage, indicating that the signals are not due to read mis-mapping. Positions with nucleotide diver-
sity and no SNV-density are those where diversity exists but is not high enough to call a SNV

3) Read-level ANI distribution

Distribution of read pair ANI levels when mapped to a reference genome; this plot suggests that the reference genome
is >1% different than the mapped reads

4) Major allele frequencies

Distribution of the major allele frequencies of bi-allelic SNVs (the Site Frequency Spectrum). Alleles with major
frequencies below 50% are the result of multiallelic sites. The lack of distinct puncta suggest that more than a few
distinct strains are present.

74 Chapter 1. Contents

inStrain, Release 1.0.0

1.6. Expected output 75

inStrain, Release 1.0.0

76 Chapter 1. Contents

inStrain, Release 1.0.0

1.6. Expected output 77

inStrain, Release 1.0.0

78 Chapter 1. Contents

inStrain, Release 1.0.0

1.6. Expected output 79

inStrain, Release 1.0.0

5) Linkage decay

Metrics of SNV linkage vs. distance between SNVs; linkage decay (shown in one plot and not the other) is a common
signal of recombination.

6) Read filtering plots

Bar plots showing how many reads got filtered out during filtering. All percentages are based on the number of paired
reads; for an idea of how many reads were filtered out for being non-paired, compare the top bar and the second to top
bar.

7) Scaffold inspection plot (large)

This is an elongated version of the genome-wide microdiversity metrics that is long enough for you to read scaffold
names on the y-axis

80 Chapter 1. Contents

inStrain, Release 1.0.0

1.6. Expected output 81

inStrain, Release 1.0.0

82 Chapter 1. Contents

inStrain, Release 1.0.0

1.6. Expected output 83

inStrain, Release 1.0.0

84 Chapter 1. Contents

inStrain, Release 1.0.0

8) Linkage with SNP type (GENES REQUIRED)

Linkage plot for pairs of non-synonymous SNPs and all pairs of SNPs

9) Gene histograms (GENES REQUIRED)

Histogram of values for all genes profiled

10) Compare dendrograms (RUN ON COMPARE; NOT PROFILE)

A dendrogram comparing all samples based on popANI and based on shared_bases.

1.7 Raw data access and API

1.7.1 API for accessing raw data

inStrain stores much more data than is shown in the output folder. It is kept in the raw_data folder, and is mostly
stored in compressed formats. This data can be easily accessed using python, as described below.

1.7. Raw data access and API 85

inStrain, Release 1.0.0

86 Chapter 1. Contents

inStrain, Release 1.0.0

To access the data, you first make an SNVprofile object of the inStrain output profile, and then you access data from
that object. For example, the following code accessed the raw SNP table

import inStrain
import inStain.SNVprofile

IS = inStain.SNVprofile.SNVprofile(``/home/mattolm/inStrainOutputTest/``)
raw_snps = IS.get('raw_snp_table')

You can use the example above (IS.get()) to access any of the raw data described in the following section. There
are also another special things that are accessed in other ways, as described in the section “Accessing other data”

Basics of raw_data

A typical run of inStrain will yield a folder titled “raw_data”, with lots of individual files in it. The specifics of what
files are in there depend on how inStrain was run, and whether or not additional commands were run as well (like
profile_genes).

There will always be a file titled “attributes.tsv”. This describes some basic information about each item in the raw
data. Here’s an example

1.7. Raw data access and API 87

inStrain, Release 1.0.0

Table 23: attributes.tsv
name value type description
location /Users/mattolm/Programs/inStrain/test/test_backend/testdir/testvalue Location of SNVprofile ob-

ject
version 1.3.3 value Version of inStrain
Rdic /Users/mattolm/Programs/inStrain/test/test_backend/testdir/test/raw_data/Rdic.jsondic-

tio-
nary

Read pair -> mismatches

mapping_info /Users/mattolm/Programs/inStrain/test/test_backend/testdir/test/raw_data/mapping_info.csv.gzpan-
das

Report on reads

fasta_loc /Users/mattolm/Programs/inStrain/test/test_data/N5_271_010G1_scaffold_min1000.favalue Location of .fasta file used
during profile

scaf-
fold2length

/Users/mattolm/Programs/inStrain/test/test_backend/testdir/test/raw_data/scaffold2length.jsondic-
tio-
nary

Dictionary of scaffold 2
length

object_type profile value Type of SNVprofile (profile
or compare)

bam_loc /Users/mattolm/Programs/inStrain/test/test_data/N5_271_010G1_scaffold_min1000.fa-
vs-N5_271_010G1.sorted.bam

value Location of .bam file

scaffold_list /Users/mattolm/Programs/inStrain/test/test_backend/testdir/test/raw_data/scaffold_list.txtlist 1d list of scaffolds that were
profiled

raw_linkage_table/Users/mattolm/Programs/inStrain/test/test_backend/testdir/test/raw_data/raw_linkage_table.csv.gzpan-
das

Raw table of linkage informa-
tion

raw_snp_table /Users/mattolm/Programs/inStrain/test/test_backend/testdir/test/raw_data/raw_snp_table.csv.gzpan-
das

Contains raw SNP informa-
tion on a mm level

cumula-
tive_scaffold_table

/Users/mattolm/Programs/inStrain/test/test_backend/testdir/test/raw_data/cumulative_scaffold_table.csv.gzpan-
das

Cumulative coverage on
mm level. Formerly scaf-
foldTable.csv

cumula-
tive_snv_table

/Users/mattolm/Programs/inStrain/test/test_backend/testdir/test/raw_data/cumulative_snv_table.csv.gzpan-
das

Cumulative SNP on mm
level. Formerly snpLoca-
tions.pickle

scaf-
fold_2_mm_2_read_2_snvs

/Users/mattolm/Programs/inStrain/test/test_backend/testdir/test/raw_data/scaffold_2_mm_2_read_2_snvs.picklepickle crazy nonsense needed for
linkage

genes_coverage /Users/mattolm/Programs/inStrain/test/test_backend/testdir/test/raw_data/genes_coverage.csv.gzpan-
das

Coverage of individual genes

genes_clonality /Users/mattolm/Programs/inStrain/test/test_backend/testdir/test/raw_data/genes_clonality.csv.gzpan-
das

Clonality of individual genes

genes_SNP_count/Users/mattolm/Programs/inStrain/test/test_backend/testdir/test/raw_data/genes_SNP_count.csv.gzpan-
das

SNP density and counts of in-
dividual genes

SNP_mutation_types/Users/mattolm/Programs/inStrain/test/test_backend/testdir/test/raw_data/SNP_mutation_types.csv.gzpan-
das

The mutation types of SNPs

covT /Users/mattolm/Programs/inStrain/test/test_backend/testdir/test/raw_data/covT.hd5spe-
cial

Scaffold -> mm -> position
based coverage

clonT /Users/mattolm/Programs/inStrain/test/test_backend/testdir/test/raw_data/clonT.hd5spe-
cial

Scaffold -> mm -> position
based clonality

clonTR /Users/mattolm/Programs/inStrain/test/test_backend/testdir/test/raw_data/clonTR.hd5spe-
cial

Scaffold -> mm -> rarefied
position based clonality

genes_fileloc /Users/mattolm/Programs/inStrain/test/test_data/N5_271_010G1_scaffold_min1000.fa.genes.fnavalue Location of genes file that
was used to call genes

genes_table /Users/mattolm/Programs/inStrain/test/test_backend/testdir/test/raw_data/genes_table.csv.gzpan-
das

Location of genes in the asso-
ciated genes_file

scaffold2bin /Users/mattolm/Programs/inStrain/test/test_backend/testdir/test/raw_data/scaffold2bin.jsondic-
tio-
nary

Dictionary of scaffold 2 bin

bin2length /Users/mattolm/Programs/inStrain/test/test_backend/testdir/test/raw_data/bin2length.jsondic-
tio-
nary

Dictionary of bin 2 total
length

genome_level_info/Users/mattolm/Programs/inStrain/test/test_backend/testdir/test/raw_data/genome_level_info.csv.gzpan-
das

Table of genome-level infor-
mation

88 Chapter 1. Contents

inStrain, Release 1.0.0

This is what the columns correspond to:

name The name of the data. This is the name that you put into IS.get() to have inStrain retrieve the data for you.
See the section “Accessing raw data” for an example.

value This lists the path to where the data is located within the raw_data folder. If the type of data is a value, than this
just lists the value

type This describes how the data is stored. Value = the data is whatever is listed under value; list = a python list;
numpy = a numpy array; dictionary = a python dictionary; pandas = a pandas dataframe; pickle = a piece of
data that’s stored as a python pickle object; special = a piece of data that is stored in a special way that inStrain
knows how to de-compress

description A one-sentence description of what’s in the data.

Warning: Many of these pieces of raw data have the column “mm” in them, which means that things are
calculated at every possible read mismatch level. This is often not what you want. See the section “Dealing with
mm” for more information.

Accessing other data

In addition to the raw_data described above, there are a couple of other things that inStrain can make for you. You
access these from methods that run on the IS object itself, instead of using the get method. For example:

import inStrain
import inStain.SNVprofile

IS = inStain.SNVprofile.SNVprofile(``/home/mattolm/inStrainOutputTest/``)
coverage_table = IS.get_raw_coverage_table()

The following methods work like that:

get_nonredundant_scaffold_table() Get a scaffold table with just one line per scaffold, not multiple mms

get_nonredundant_linkage_table() Get a linkage table with just one line per scaffold, not multiple mms

get_nonredundant_snv_table() Get a SNP table with just one line per scaffold, not multiple mms

get_clonality_table() Get a raw clonality table, listing the clonality of each position. Pass nonredundant=False to
keep multiple mms

Dealing with “mm”

Behind the scenes, inStrain actually calculates pretty much all metrics for every read pair mismatch level. That is,
only including read pairs with 0 mis-match to the reference sequences, only including read pairs with >= 1 mis-match
to the reference sequences, all the way up to the number of mismatches associated with the “PID” parameter.

For most of the output that inStrain makes in the output folder, it removes the “mm” column and just gives the results
for the maximum number of mismatches. However, it’s often helpful to explore other mismatches levels, to see how
parameters vary with more or less stringent mappings. Much of the data stored in “read_data” is on the mismatch
level. Here’s an example of what the looks like (this is the cumulative_scaffold_table):

,scaffold,length,breadth,coverage,coverage_median,coverage_std,bases_w_0_coverage,
→˓mean_clonality,median_clonality,unmaskedBreadth,SNPs,breadth_expected,ANI,mm
0,N5_271_010G1_scaffold_102,1144,0.9353146853146853,5.106643356643357,5,2.
→˓932067325774674,74,1.0,1.0,0.6145104895104895,0,0.9889923642060382,1.0,0

(continues on next page)

1.7. Raw data access and API 89

inStrain, Release 1.0.0

(continued from previous page)

1,N5_271_010G1_scaffold_102,1144,0.9353146853146853,6.421328671328672,6,4.
→˓005996333777764,74,0.9992001028104149,1.0,0.6748251748251748,0,0.9965522492489882,1.
→˓0,1
2,N5_271_010G1_scaffold_102,1144,0.9423076923076923,7.3627622377622375,7,4.
→˓2747074564903285,66,0.9993874800638958,1.0,0.7928321678321678,0,0.998498542620078,1.
→˓0,2
3,N5_271_010G1_scaffold_102,1144,0.9423076923076923,7.859265734265734,8,4.
→˓748789115369562,66,0.9992251555869703,1.0,0.7928321678321678,0,0.9990314705263914,1.
→˓0,3
4,N5_271_010G1_scaffold_102,1144,0.9423076923076923,8.017482517482517,8,4.
→˓952541407151938,66,0.9992251555869703,1.0,0.7928321678321678,0,0.9991577528529144,1.
→˓0,4
5,N5_271_010G1_scaffold_102,1144,0.9458041958041958,8.271853146853147,8,4.
→˓9911156795536105,62,0.9992512780077317,1.0,0.8024475524475524,0,0.9993271891539499,
→˓1.0,7

As you can see, the same scaffold is shown multiple times, and the last column is mm. At the row with mm = 0, you
can see what the stats are when only considering reads that perfectly map to the reference sequence. As the mm goes
higher, so do stats like coverage and breadth, as you now allow reads with more mismatches to count in the generation
of these stats. In order to convert this files to what is provided in the output folder, the following code is run:

import inStrain
import inStain.SNVprofile

IS = inStain.SNVprofile.SNVprofile(``/home/mattolm/inStrainOutputTest/``)
scdb = IS.get('cumulative_scaffold_table')
ScaffDb = scdb.sort_values('mm')\

.drop_duplicates(subset=['scaffold'], keep='last')\

.sort_index().drop(columns=['mm'])

The last line looks complicated, but it’s very simple what is going on. First, you sort the database by mm, with
the lowest mms at the top. Next, for each scaffold, you only keep the row with the lowest mm. That’s done us-
ing the drop_duplicates(subset=['scaffold'], keep='last') command. Finally, you re-sort the
DataFrame to the original order, and remove the mm column. In the above example, this would mean that the only row
that would survive would be where mm = 7, because that’s the bottom row for that scaffold.

You can of course subset to any level of mismatch by modifying the above code slightly. For example, to generate this
table only using reads with <=5 mismatches, you could use the following code:

import inStrain
import inStain.SNVprofile

IS = inStain.SNVprofile.SNVprofile(``/home/mattolm/inStrainOutputTest/``)
scdb = IS.get('cumulative_scaffold_table')
scdb = scdb[scdb['mm'] <= 5]
ScaffDb = scdb.sort_values('mm')\

.drop_duplicates(subset=['scaffold'], keep='last')\

.sort_index().drop(columns=['mm'])

Warning: You usually do not want to subset these DataFrames using something like scdb =
scdb[scdb['mm'] == 5]. That’s because if there are no reads that have 5 mismatches, as in the case above,
you’ll end up with an empty DataFrame. By using the drop_duplicates technique described above you avoid this
problem, because in the cases where you don’t have 5 mismatches, you just get the next-highest mm level (which
is usually what you want)

90 Chapter 1. Contents

inStrain, Release 1.0.0

A note for programmers

If you’d like to edit inStrain to add functionality for your data, don’t hesitate to reach out to the authors of this program
for help. Additionally, please consider submitting a pull request on GitHub so that others can use your changes as
well.

1.8 Benchmarks

This page contains data from tests performed to evaluate the accuracy inStrain. In most cases similar tests were
performed to compare inStrain’s accuracy to other leading tools. Most of these benchmarks are adapted from the
inStrain publication where you can find more details on how they were performed.

1.8.1 Strain-level comparisons

This section contains a series of benchmarks evaluating the ability of inStrain to perform detailed strain-level compar-
isons. In all cases inStrain is benchmarked against three leading tools:

MIDAS - an integrated pipeline to estimate bacterial species abundance and strain-level genomic variation. Strain-
level comparisons are based on consensus alleles called on whole genomes. The script strain_tracking.py was used for
benchmarks.

StrainPhlAn - a tool for strain-level resolution of species across large sample sets, based on consensus single nucleotide
polymorphisms (SNPs) called on species marker genes. Based on the MetaPhlAn2 db_v20 database.

dRep - a genome alignment program. dRep does not purport to have accuracy over 99.9% ANI and was just used for
comparison purposes.

Benchmark with synthetic data

A straightforward in silico test. A randomly selected E. coli genome was downloaded and mutated to various chosen
ANI levels using SNP Mutator. The original genome was compared to the mutated genome, and we looked for the
difference between the actual ANI and the calculated ANI (the ANI reported by each program).

All four methods performed well on this test, although dRep, inStrain, and MIDAS had lower errors in the ANI calcu-
lation than StrainPhlAn overall (0.00001%, 0.002%, 0.006% and 0.03%, respectively; average discrepancy between
the true and calculated ANI). This is likely because dRep, inStrain, and MIDAS compare positions from across the
entire genome (99.99998%, 99.7%, and 85.8% of the genome, respectively) and StrainPhlAn does not (0.3% of the
genome).

Methods for synthetic data benchmark:

For dRep, mutated genomes were compared to the reference genome using dRep on default settings. For inStrain,
MIDAS, andStrainPhlAn, Illumina reads were simulated for all genomes at 20x coverage using pIRS.

For inStrain, synthetic reads were mapped back to the reference genome using Bowtie 2, profiled using “inStrain
profile” under default settings, and compared using “inStrain compare” under default settings.

For StrainPhlAn, synthetic reads profiled with Metaphlan2, resulting marker genes were aligned us-
ing StrainPhlan, and the ANI of resulting nucleotide alignments was calculated using the class
“Bio.Phylo.TreeConstruction.DistanceCalculator(‘identity’)” from the BioPython python package.

For MIDAS, synthetic reads were provided to the program directly using the “run_midas.py species” command,
and compared using the “run_midas.py snps” command. The ANI of the resulting comparisons was calculated as
“[mean(sample1_bases, sample2_bases) - count_either] / mean(sample1_bases, sample2_bases)”.

1.8. Benchmarks 91

https://www.biorxiv.org/content/10.1101/2020.01.22.915579v1
https://github.com/snayfach/MIDAS
https://github.com/snayfach/MIDAS/blob/master/docs/strain_tracking.md
https://github.com/biobakery/biobakery/wiki/strainphlan1
https://drep.readthedocs.io/en/latest/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000988385.1
https://github.com/CFSAN-Biostatistics/snp-mutator
https://github.com/galaxy001/pirs#:~:text=FASTA...-,pIRS%20is%20a%20program%20for%20simulating%20paired%2Dend%20reads%20from,any%20number%20of%20reference%20sequences.

inStrain, Release 1.0.0

Benchmark with defined microbial communities

This test (schematic above) involved comparing real metagenomes derived from defined bacterial communities. The
ZymoBIOMICS Microbial Community Standard, which contains cells from eight bacterial species at defined abun-
dances, was divided into three aliquots and subjected to DNA extraction, library preparation, and metagenomic se-
quencing. The same community of 8 bacterial species was sequenced 3 times, so each program should report
100% ANI for all species comparisons. Deviations from this ideal either represent errors in sequence alignment, the
presence of microdiversity consistent with maintenance of cultures in the laboratory, or inability of programs to handle
errors and biases introduced during routine DNA extraction, library preparation, and sequencing with Illumina).

MIDAS, dRep, StrainPhlAn, and inStrain reported average ANI values of 99.97%, 99.98%, 99.990% and 99.999998%,
respectively, with inStrain reporting average popANI values of 100% for 23 of the 24 comparisons and 99.99996% for
one comparison. The difference in performance likely arises because the Zymo cultures contain non-fixed nucleotide
variants that inStrain uses to confirm population overlap but that confuse the consensus sequences reported by dRep,
StrainPhlAn, and MIDAS (conANI). We also used this data to establish a threshold for the detection of “same” versus
“different” strains. The thresholds for MIDAS, dRep, StrainPhlAn, and inStrain, calculated based on the comparison
with the lowest average ANI across all 24 sequence comparisons, are shown in the table below.

Program Minimum reported ANI Years divergence
MIDAS 99.92% 3771
dRep 99.94% 2528
StrainPhlAn 99.97% 1307
InStrain 99.99996% 2.2

Years divergence was calculated from “minimum reported ANI” using the previously reported rate of 0.9 SNSs ac-
cumulated per genome per year in the gut microbiome of healthy human adults (Zhao 2019) . This benchmark
demonstrates that inStrain can be used for detection of identical microbial strains with a stringency that is
substantially higher than other tools. Stringent thresholds are useful for strain tracking, as strains that have diverged

92 Chapter 1. Contents

https://www.zymoresearch.com/collections/zymobiomics-microbial-community-standards/products/zymobiomics-microbial-community-standard
https://doi.org/10.1016/j.chom.2019.03.007

inStrain, Release 1.0.0

1.8. Benchmarks 93

inStrain, Release 1.0.0

for hundreds to thousands of years are clearly not linked by a recent transmission event.

We also performed an additional benchmark with this data on inStrain only. InStrain relies on representative genomes
to calculate popANI, so we wanted to know whether using non-ideal reference genomes would impact it’s accuracy. By
mapping reads to all 4,644 representative genomes in the Unified Human Gastrointestinal Genome (UHGG) collection
we identified the 8 relevant representative genomes. These genomes had between 93.9% - 99.6% ANI to the organisms
present in the Zymo samples. InStrain comparisons based on these genomes were still highly accurate (average
99.9998% ANI, lowest 99.9995% ANI, limit of detection 32.2 years), highlighting that inStrain can be used with
reference genomes from databases when sample-specific reference genomes cannot be assembled.

Methods for defined microbial community benchmark:

Reads from Zymo samples are available under BioProject PRJNA648136

For dRep, reads from each sample were assembled independently using IDBA_UD, binned into genomes based off of
alignment to the provided reference genomes using nucmer, and compared using dRep on default settings.

For StrainPhlAn, reads from Zymo samples profiled with Metaphlan2, resulting marker genes were aligned using
StrainPhlan, and the ANI of resulting nucleotide alignments was calculated as described in the synthetic benchmark
above.

For MIDAS, reads from Zymo samples were provided to MIDAS directly and the ANI of sample comparisons was
calculated as described in the synthetic benchmark above.

For inStrain, reads from Zymo samples were aligned to the provided reference genomes using Bowtie 2, profiled
using “inStrain profile” under default settings, and compared using “inStrain compare” under default settings. popANI
values were used for inStrain.

Eukaryotic genomes were excluded from this analysis, and raw values are available in Supplemental Table S1 of
the inStrain manuscript. To evaluate inStrain when using genomes from public databases, all reference genomes
from the UHGG collection were downloaded and concatenated into a single .fasta file. Reads from the Zymo sample
were mapped against this database and processed with inStrain as described above. The ability of each method to
detect genomes was performed using all Zymo reads concatenated together.

Benchmark with true microbial communities

This test evaluated the stringency with which each tool can detect shared strains in genuine microbial communities.
Tests like this are hard to perform because it is difficult to know the ground truth. We can never really know whether
two true genuine communities actually share strains. For this test we leveraged the fact that new-born siblings share
far more strains than unrelated newborns.. In this test, we compared the ability of the programs to detect strains
shared by twin premature infants (presumably True Positives) vs. their detection of strains shared by unrelated
infants (presumably False Positives).

All methods identified significantly more strain sharing among twin pairs than pairs of unrelated infants, as expected,
and inStrain remained sensitive at substantially higher ANI thresholds than the other tools. The reduced ability of
StrainPhlAn and MIDAS to identify shared strains is likely based on their reliance on consensus-based ANI (conANI)
measurements. We know that microbiomes can contain multiple coexisting strains, and when two or more strains of a
species are in a sample at similar abundance levels it can lead to pileups of reads from multiple strains and chimeric
sequences. The popANI metric is designed to account for this complexity.

It is also worth discussing Supplemental Figure S5 from the inStrain manuscript here.

This figure was generated from genomic comparisons between genomes present in the same infant over time (longitu-
dinal data). In cases where the same genome was detected in multiple time-points over the time-series sampling of an
infant, the percentage of comparisons between genomes that exceed various popANI (a) and conANI (b) thresholds is
plotted. This figure shows that the use of popANI allows greater stringency than conANI.

Note: Based on the data presented in the above tests, a threshold of 99.999% popANI was chosen as the threshold to

94 Chapter 1. Contents

https://www.nature.com/articles/s41587-020-0603-3
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA648136
https://s3.amazonaws.com/zymo-files/BioPool/ZymoBIOMICS.STD.refseq.v2.zip
https://www.nature.com/articles/ismej201683
https://www.nature.com/articles/ismej201683

inStrain, Release 1.0.0

1.8. Benchmarks 95

inStrain, Release 1.0.0

define bacterial, bacteriophage, and plasmid strains for the work presented in the inStrain manuscript. This is likely a
good threshold for a variety of communities.

Methods for true microbial community benchmark:

Twin-based comparisons were performed on three randomly chosen sets of twins that were sequenced during a previ-
ous study (Olm 2019). Reads can be found under Bioproject PRJNA294605

For StrainPhlAn, all reads sequenced from each infant were concatenated and profiled using Metaphlan2, compared
using StrainPhlAn, and the ANI of resulting nucleotide alignments was calculated as described for the synthetic
benchmark.

For MIDAS, all reads sequenced from each infant were concatenated and profiled with MIDAS, and the ANI of species
profiled in multiple infants was calculated as described for the synthetic benchmark.

For dRep, all de-replicated bacterial genomes assembled and binned from each infant (available from (Olm 2019))
were compared in a pairwise manner using dRep under default settings.

For inStain, strain-sharing from these six infants was determined using the methods described below.

ANI values from all compared genomes and the number of genomes shared at a number of ANI thresholds are available
for all methods in Supplemental Table S1 of the inStrain publication.

1.8.2 Species-level community profiling

This section contains tests evaluating the ability of inStrain and other tools to accurately profile microbial communities.
Here inStrain is benchmarked against two other tools:

MIDAS - an integrated pipeline to estimate bacterial species abundance and strain-level genomic variation.

MetaPhlAn 2 - a computational tool for profiling the composition of microbial communities from metagenomic shot-
gun sequencing data. MetaPhlAn 2 uses unique clade-specific marker genes.

Benchmark with defined microbial communities

This test evaluated the ability of programs to identify the microbial species present in metagenomes of defined bacterial
communities. For this test we purchased, extracted DNA from, and sequenced a ZymoBIOMICS Microbial Commu-
nity Standard. The reads used for this test are available here. This community contains 8 defined bacterial species,
and we simply evaluated the ability of each program to identify those and only those 8 bacterial species. Results in the
table below.

Program True species detected False species detected Accuracy
MIDAS 8 15 35%
MetaPhlAn 2 8 11 42%
InStrain 8 0 100%

All programs successfully identified the 8 bacteria present in the metagenome, but MIDAS and StrainPhlAn detected
an additional 15 and 11 bacterial species as well. The raw tables produced by each tool are available at the bottom
of this section. Looking at these tables, you’ll notice that many of these False positive species detected are related to
species that are actually present in the community. For example, MetaPhlAn2 reported the detection of Bacillus cereus
thuringiensis (False Positive) as well as the detection of Bacillus subtilis (True Positive). Similarly, MIDAS reported
the detection of Escherichia fergusonii (related to True Positive Escherichia coli) and Bacillus anthracis (related to
True Positive Bacillus subtilis).

Importantly inStrain detected many of these same False Positives as well. However inStrain also provides a set
of other metrics that properly filter out erroneous detections. Taking a look at the information reported by inStrain

96 Chapter 1. Contents

https://doi.org/10.1126/sciadv.aax5727
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA294605
https://doi.org/10.1126/sciadv.aax5727
https://github.com/snayfach/MIDAS
http://huttenhower.sph.harvard.edu/metaphlan2
https://www.zymoresearch.com/collections/zymobiomics-microbial-community-standards/products/zymobiomics-microbial-community-standard
https://www.zymoresearch.com/collections/zymobiomics-microbial-community-standards/products/zymobiomics-microbial-community-standard
https://www.ncbi.nlm.nih.gov/biosample/?term=S3_CON_017Z2

inStrain, Release 1.0.0

(at the very bottom of this page) shows that many genomes besides the 8 True Positives were detected. When using
the recommended genome breadth cutoff of 50%, only the 8 True Positive genomes remain (see section “Detecting
organisms in metagenomic data” in Important concepts for more info). You’ll notice that no such info is reported with
MIDAS or MetaPhlAn 2. While relative abundance could conceivably be used to filter out erroneous taxa with these
tools, doing so would majorly limit their ability to detect genuine low-abundance taxa.

It’s also worth noting that if one is just interested in measuring community presence / absence, as in this test, any pro-
gram that accurately reports breadth should give similar results to inStrain when mapped against the UHGG genome
set. One such program is coverM, a fast program for calculating genome coverage and breadth that can be run on its
own or through inStrain using the command inStrain quick_profile.

Methods for defined microbial community profiling experiment:

For inStrain, all reference genomes from the UHGG collection were downloaded and concatenated into a single .fasta
file, reads from the Zymo sample were mapped against this database, and inStrain profile was run on default settings.

Note: The UHGG genome database used for this section is available for download in the Tutorial section.

For MIDAS, the command run_midas.py species was used along with the default database. In cases where
the same species was detected multiple times as part of multiple genomes, the species was only counted once.

For MetaPhlAn 2, the command metaphlan2.py was used along with the MetaPhlAn2 db_v20 database.

Eukaryotic genomes were excluded from this analysis.

Raw data for defined microbial community profiling experiment:

MetaPhlAn 2:

1.8. Benchmarks 97

https://github.com/wwood/CoverM

inStrain, Release 1.0.0

Table 24: metaphlan2/S3_CON_017Z2_profile.txt
species abun-

dance
Metaphlan2_species

Lactobacillus
fermentum

23.1133 k__Bacteria|p__Firmicutes|c__Bacilli|o__Lactobacillales|f__Lactobacillaceae|g__Lactobacillus|s__Lactobacillus_fermentum

Escherichia coli 20.0587 k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacteriales|f__Enterobacteriaceae|g__Escherichia|s__Escherichia_coli
Salmonella en-
terica

18.44954k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacteriales|f__Enterobacteriaceae|g__Salmonella|s__Salmonella_enterica

Pseudomonas
aeruginosa

14.42109k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Pseudomonadales|f__Pseudomonadaceae|g__Pseudomonas|s__Pseudomonas_aeruginosa

Enterococcus
faecalis

12.21137k__Bacteria|p__Firmicutes|c__Bacilli|o__Lactobacillales|f__Enterococcaceae|g__Enterococcus|s__Enterococcus_faecalis

Staphylococcus
aureus

6.36267 k__Bacteria|p__Firmicutes|c__Bacilli|o__Bacillales|f__Staphylococcaceae|g__Staphylococcus|s__Staphylococcus_aureus

Bacillus subtilis 2.44228 k__Bacteria|p__Firmicutes|c__Bacilli|o__Bacillales|f__Bacillaceae|g__Bacillus|s__Bacillus_subtilis
Listeria mono-
cytogenes

1.8644 k__Bacteria|p__Firmicutes|c__Bacilli|o__Bacillales|f__Listeriaceae|g__Listeria|s__Listeria_monocytogenes

Salmonella un-
classified

0.67363 k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacteriales|f__Enterobacteriaceae|g__Salmonella|s__Salmonella_unclassified

Saccharomyces
cerevisiae

0.20426 k__Eukaryota|p__Ascomycota|c__Saccharomycetes|o__Saccharomycetales|f__Saccharomycetaceae|g__Saccharomyces|s__Saccharomyces_cerevisiae

Cryptococcus
neoformans

0.05417 k__Eukaryota|p__Basidiomycota|c__Tremellomycetes|o__Tremellales|f__Tremellaceae|g__Filobasidiella|s__Cryptococcus_neoformans

Listeria unclas-
sified

0.02341 k__Bacteria|p__Firmicutes|c__Bacilli|o__Bacillales|f__Listeriaceae|g__Listeria|s__Listeria_unclassified

Klebsiella oxy-
toca

0.0165 k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacteriales|f__Enterobacteriaceae|g__Klebsiella|s__Klebsiella_oxytoca

Naumovozyma
unclassified

0.01337 k__Eukaryota|p__Ascomycota|c__Saccharomycetes|o__Saccharomycetales|f__Saccharomycetaceae|g__Naumovozyma|s__Naumovozyma_unclassified

Klebsiella
unclassified

0.01307 k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacteriales|f__Enterobacteriaceae|g__Klebsiella|s__Klebsiella_unclassified

Bacillus cereus
thuringiensis

0.00809 k__Bacteria|p__Firmicutes|c__Bacilli|o__Bacillales|f__Bacillaceae|g__Bacillus|s__Bacillus_cereus_thuringiensis

Clostridium
perfringens

0.00554 k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiaceae|g__Clostridium|s__Clostridium_perfringens

Eremothecium
unclassified

0.00319 k__Eukaryota|p__Ascomycota|c__Saccharomycetes|o__Saccharomycetales|f__Saccharomycetaceae|g__Eremothecium|s__Eremothecium_unclassified

Veillonella
parvula

0.0015 k__Bacteria|p__Firmicutes|c__Negativicutes|o__Selenomonadales|f__Veillonellaceae|g__Veillonella|s__Veillonella_parvula

Clostridium bu-
tyricum

0.00054 k__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiaceae|g__Clostridium|s__Clostridium_butyricum

Enterobacter
cloacae

0.00051 k__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacteriales|f__Enterobacteriaceae|g__Enterobacter|s__Enterobacter_cloacae

MIDAS:

Table 25: S3_CON_017Z2_MIDAS/species/species_profile.txt
species_id count_reads coverage relative_abundance species
Lactobacillus_fermentum_54035 22305 322.661072 0.202032 Lactobacillus fermentum
Salmonella_enterica_58156 18045 296.117276 0.185412 Salmonella enterica
Escherichia_coli_58110 19262 286.702733 0.179517 Escherichia coli

Continued on next page

98 Chapter 1. Contents

inStrain, Release 1.0.0

Table 25 – continued from previous page
Pseudomonas_aeruginosa_57148 14214 214.266462 0.134162 Pseudomonas aeruginosa
Enterococcus_faecalis_56297 12382 183.37939 0.114822 Enterococcus faecalis
Staphylococcus_aureus_56630 6146 89.116402 0.0558 Staphylococcus aureus
Bacillus_subtilis_57806 3029 44.275375 0.027723 Bacillus subtilis
Salmonella_enterica_58266 3027 41.774295 0.026157 Salmonella enterica
Listeria_monocytogenes_53478 2250 33.367947 0.020893 Listeria monocytogenes
Escherichia_fergusonii_56914 2361 33.034998 0.020685 Escherichia fergusonii
Pseudomonas_aeruginosa_55861 927 12.402473 0.007766 Pseudomonas aeruginosa
Salmonella_enterica_53987 791 10.982231 0.006876 Salmonella enterica
Escherichia_coli_57907 713 9.860496 0.006174 Escherichia coli
Escherichia_albertii_56276 457 6.543769 0.004097 Escherichia albertii
Citrobacter_youngae_61659 455 6.248948 0.003913 Citrobacter youngae
Salmonella_bongori_55351 314 4.187424 0.002622 Salmonella bongori
Staphylococcus_aureus_37016 62 0.907418 0.000568 Staphylococcus aureus
Klebsiella_oxytoca_54123 29 0.418764 0.000262 Klebsiella oxytoca
Bacillus_sp_58480 17 0.233451 0.000146 Bacillus sp
Clostridium_perfringens_56840 12 0.182686 0.000114 Clostridium perfringens
Listeria_monocytogenes_56337 11 0.162597 0.000102 Listeria monocytogenes
Bacillus_subtilis_55718 9 0.127828 0.00008 Bacillus subtilis
Bacillus_anthracis_57688 2 0.031576 0.00002 Bacillus anthracis
Bacillus_cereus_58113 1 0.014684 0.000009 Bacillus cereus
Enterococcus_faecium_56947 1 0.014791 0.000009 Enterococcus faecium
Klebsiella_pneumoniae_54788 1 0.014852 0.000009 Klebsiella pneumoniae
Veillonella_parvula_57794 1 0.014925 0.000009 Veillonella parvula
Haemophilus_haemolyticus_58350 1 0.01351 0.000008 Haemophilus haemolyticus
Veillonella_parvula_58184 1 0.012646 0.000008 Veillonella parvula
Enterobacter_sp_59441 1 0.003478 0.000002 Enterobacter sp
Pseudomonas_sp_59807 1 0.003203 0.000002 Pseudomonas sp

InStrain:

1.8. Benchmarks 99

inStrain, Release 1.0.0

Table 26: S3_CON_017Z2.genomeInfo.csv
genomespeciesbreadthrel-

a-
tive_abundance

cov-
er-
age

nucl_diversitylengthtrue_scaffoldsde-
tected_scaffolds

cov-
er-
age_median

cov-
er-
age_std

cov-
er-
age_SEM

breadth_minCovbreadth_expectednucl_diversity_rarefiedco-
nANI_reference

popANI_referenceiRepiRep_GC_correctedlinked_SNV_countSNV_distance_meanr2_meand_prime_meancon-
sen-
sus_divergent_sites

pop-
u-
la-
tion_divergent_sites

SNS_countSNV_countfil-
tered_read_pair_count

reads_unfiltered_pairsreads_mean_PIDreads_unfiltered_readsdi-
ver-
gent_site_count

Genomelin-
eage

genus

GUT_GENOME142031.fna.gzSalmonella
en-
ter-
ica

0.8909007110.192920699418.62731520.00157542549554312 1 470167.63276530.0753070730.8895702511 0.00127840.9889367640.989338515FALSE2901966.111444230.5794921410.9628555884876946998465755776744828475081960.9880099521533204152351GUT_GENOME142031d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Salmonella;s__Salmonella
en-
ter-
ica

Salmonella

GUT_GENOME143383.fna.gzPseu-
domonas
aerug-
i-
nosa

0.8946460330.176078828280.48397720.001768407675039680 74 312110.11194470.0424311830.8927888081 0.0015097060.990203060.990485637FALSE3808595.963187610.6224039870.9598640755904357340569226330678094868155970.9856815791389789563252GUT_GENOME143383d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Pseudomonadaceae;g__Pseudomonas;s__Pseudomonas
aerug-
i-
nosa

Pseu-
domonas

GUT_GENOME144544.fna.gzEs-
cherichia
coli

0.7778780580.138653747279.23110260.00167758853394682 2 358191.1171640.0827117110.7724788311 0.0012490490.9761975990.976755468FALSE3844387.254246550.5941908930.9792309559817695875953047777534178053968830.94902115511455710103081GUT_GENOME144544d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Escherichia;s__Escherichia
coli_D

Es-
cherichia

GUT_GENOME000862.fna.gzLac-
to-
bacil-
lus
fer-
men-
tum

0.8622751940.096747331528.56874450.002324426196819380 71 512531.13411130.3801394390.8610095661 0.0018537010.9927046150.99333307FALSE2452343.650124370.4724750220.9418687431236311298109434409389778039152450.987724733814106415352GUT_GENOME000862d__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus_H;s__Lactobacillus_H
fer-
men-
tum

Lac-
to-
bacil-
lus_H

GUT_GENOME103721.fna.gzEn-
te-
ro-
coc-
cus
fae-
calis

0.8903658370.064796999247.89880540.00135996628106751 1 263106.75896360.0636816870.8891760881 0.0010091170.9925723790.992928895FALSE1620670.98660990.5219392430.9429937991856317672174433088252106125422690.991283432517319220531GUT_GENOME103721d__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Enterococcaceae;g__Enterococcus;s__Enterococcus
fae-
calis

En-
te-
ro-
coc-
cus

GUT_GENOME141183.fna.gzStaphy-
lo-
coc-
cus
au-
reus

0.9415679470.03353288131.13789030.00137563527496212 2 14241.451824170.0249999360.938831571 0.0009144620.992790820.993222751FALSE2234472.091881490.5403959150.9152841881861017495172534097130500013160450.959624337269167521350GUT_GENOME141183d__Bacteria;p__Firmicutes;c__Bacilli;o__Staphylococcales;f__Staphylococcaceae;g__Staphylococcus;s__Staphylococcus
au-
reus

Staphy-
lo-
coc-
cus

GUT_GENOME145983.fna.gzEs-
cherichia
fer-
gu-
sonii

0.3361399060.01306103130.243246940.00141811546438612 1 0 73.628730410.0341685430.2861487461 0.001109640.968782430.969196326FALSE568286.239704330.702716580.9904063341483409334078718495071485174980.971752174131298642636GUT_GENOME145983d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Escherichia;s__Escherichia
fer-
gu-
sonii

Es-
cherichia

GUT_GENOME141005.fna.gzLis-
te-
ria
mono-
cy-
to-
genes

0.9246135780.01224981643.64641160.00091304930179441 1 47 15.936165190.0091736610.9207198681 0.0008380750.9958761010.995969311FALSE439069.922779040.6937713770.98809853911459112001117113414758884778670.99496109298012312512GUT_GENOME141005d__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Listeriaceae;g__Listeria;s__Listeria
mono-
cy-
to-
genes_B

Lis-
te-
ria

GUT_GENOME000031.fna.gzBacil-
lus
sub-
tilis

0.7968191310.01173860131.122102120.00098138405581014 13 28 32.203666620.0159961890.7296973971 0.0008592280.9391150030.93935457FALSE116321.132416170.7027662520.97330040118019017948117928121554541565935240.9402362311292915181436GUT_GENOME000031d__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Bacillaceae;g__Bacillus;s__Bacillus
sub-
tilis

Bacil-
lus

GUT_GENOME140826.fna.gzEs-
cherichia
sp000208585

0.2789300140.00744028617.720171630.001540747451493929 17 0 56.926916850.02680840.2061558310.999999840.0013885450.9678968520.968409325FALSE5947105.56684040.7661404830.98305076129881294042930216912903203051630.96088708882025230993GUT_GENOME140826d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Escherichia;s__Escherichia
sp000208585

Es-
cherichia

GUT_GENOME145378.fna.gzEs-
cherichia
al-
ber-
tii

0.1221793390.0031678136.8604656460.00235464496519316483 0 39.59670560.0178291350.0815337890.9976604370.002182040.9616605450.962826463FALSE12166157.80042740.7941195710.97343911315521150491493914951237351401510.95342416740711216434GUT_GENOME145378d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Escherichia;s__Escherichia
al-
ber-
tii

Es-
cherichia

GUT_GENOME143726.fna.gzSalmonella
bon-
gori

0.0708750180.0031606487.433375830.001600002457214784 48 0 96.314427950.0451263980.0386818270.9985893020.0011281280.9725430990.973068942FALSE55238.547101450.3645216910.8263222554856476347313051228961304280.9687716863419835036GUT_GENOME143726d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Salmonella;s__Salmonella
bon-
gori

Salmonella

GUT_GENOME140808.fna.gzEs-
cherichia
mar-
mo-
tae

0.1209721350.0021559785.1670574470.001726413448674447 38 0 33.46914030.0158173740.0740679660.9895641860.0015883570.9650912960.965708164FALSE205474.475657250.7410563430.98914660811601113961133079284663962970.95586307127745212122GUT_GENOME140808d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Escherichia;s__Escherichia
mar-
mo-
tae

Es-
cherichia

GUT_GENOME142492.fna.gzLis-
te-
ria
mono-
cy-
to-
genes

0.1262139550.0011768864.3020695370.001059694294162414 11 0 34.200309990.019950020.0591550790.9776007410.0003723240.9829379580.983231042FALSE2069.0582524270.8445097471 29692918291015145956472360.9834390861091103061GUT_GENOME142492d__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Listeriaceae;g__Listeria;s__Listeria
mono-
cy-
to-
genes

Lis-
te-
ria

GUT_GENOME146010.fna.gzMetakosako-
nia
in-
ter-
me-
dia

0.0112690410.00072571.2654704840.00180332461664525 4 0 20.173510430.0081245450.00861030.6728741890.0011513620.9873999430.988096808FALSE68 6.6323529410.5198490790.97133095766963262310028027282490.99037661365337723GUT_GENOME146010d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Metakosakonia;s__Metakosakonia
in-
ter-
me-
dia

Metakosako-
nia

GUT_GENOME143527.fna.gzCronobac-
ter
mal-
onati-
cus

0.00568920.0005913251.4221932050.001895836447092730924 0 24.520268250.0116774750.0044816210.7151511530.0008637840.9913160650.99186505FALSE43 3.3488372090.3235368490.89598056717416315752 22952235840.9566883151969209GUT_GENOME143527d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Cronobacter;s__Cronobacter
mal-
onati-
cus

Cronobac-
ter

GUT_GENOME147796.fna.gzStaphy-
lo-
coc-
cus
ar-
gen-
teus

0.0724145480.0005492752.1220029810.002476746278339189 66 0 13.351390680.0080284670.0465403530.8464499390.0012067620.968241470.969777675FALSE162668.763837640.8807244770.99427695341143915387156021703244080.955482052671544431GUT_GENOME147796d__Bacteria;p__Firmicutes;c__Bacilli;o__Staphylococcales;f__Staphylococcaceae;g__Staphylococcus;s__Staphylococcus
ar-
gen-
teus

Staphy-
lo-
coc-
cus

GUT_GENOME095995.fna.gzCit-
robac-
ter
por-
tu-
calen-
sis_A

0.0094717680.0004747380.9904364610.001709209515415910 8 0 19.065408620.0083994630.0058257810.58295260.0014306620.9535751160.954008059FALSE36 67.250.5651954651 13941381138149 18414204140.952624755481441430GUT_GENOME095995d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Citrobacter;s__Citrobacter
por-
tu-
calen-
sis_A

Cit-
robac-
ter

GUT_GENOME000024.fna.gzLac-
to-
bacil-
lus_B
mur-
i-
nus

0.0018701380.0004413842.1367537570.01414800622212261447 0 107.28642750.0724573440.0010741820.848436950.0098925520.9593461860.964375524FALSE542135.74354240.1690304860.8418515397 85 84 72 17418175950.94117030640278156GUT_GENOME000024d__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus_B;s__Lactobacillus_B
mur-
i-
nus

Lac-
to-
bacil-
lus_B

GUT_GENOME078306.fna.gzLac-
to-
bacil-
lus_H
oris

0.0012202710.0003994442.1410724530.012295828200611194 4 0 77.237556150.0547892950.0008663530.8490138210.0105410410.9959723820.998849252FALSE39816.927135680.3027310130.8268658487 2 2 40 16099161580.9361154133834842 GUT_GENOME078306d__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus_H;s__Lactobacillus_H
oris

Lac-
to-
bacil-
lus_H

GUT_GENOME225144.fna.gz0.0099281450.0003475351.5496589710.0021638332411528134022 0 23.454741860.0160201350.0090631330.7454731310.0007273850.9797309660.980646047FALSE66 3.3333333330.7006037220.96320448244342341470 13562137570.9712763133858484GUT_GENOME225144d__Bacteria;p__Firmicutes_A;c__Clostridia;o__Lachnospirales;f__Lachnospiraceae;g__Faecalicatena;s__Fae-
cal-
i-
catena

GUT_GENOME038289.fna.gz0.000992850.0002962151.7423847320.01068349518280712352 0 74.359397650.0557179810.0009731570.7853026070.0083677410.9831365940.988757729FALSE24068.541666670.3303222720.91576275330 20 20 36 11886119200.9823792422890456 GUT_GENOME038289d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Pasteurellaceae;g__Haemophilus_D;s__Haemophilus_D
GUT_GENOME143493.fna.gzLac-

to-
bacil-
lus_G
ke-
firi

0.008646990.0002806121.1737675930.006727598257072110 3 0 19.314090160.01205080.0078316550.6452836360.0053520710.9922515270.995380718FALSE100265.89920160.4486612010.96156194215693 82 27611319114370.99095415228111358GUT_GENOME143493d__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus_G;s__Lactobacillus_G
ke-
firi

Lac-
to-
bacil-
lus_G

GUT_GENOME212929.fna.gz0.0048651140.0002659531.5042975440.006577654190108652 12 0 31.303170940.0227655810.0041613060.7350713490.0039258620.9821767160.986348123FALSE73096.232876710.8445397530.99531387514110899 11410256106330.95875121327570213GUT_GENOME212929d__Bacteria;p__Firmicutes_C;c__Negativicutes;o__Veillonellales;f__Veillonellaceae;g__F0422;s__F0422
GUT_GENOME141398.fna.gzLac-

to-
bacil-
lus
crispa-
tus

0.0019574460.0002450981.4406417320.016147943182942563 3 0 38.979719040.0289189340.0019508860.7197537640.010758730.9851499020.995236761FALSE91985.09684440.5322445270.95313346653 17 15 1209893101210.98439617225843135GUT_GENOME141398d__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus;s__Lactobacillus
crispa-
tus

Lac-
to-
bacil-
lus

GUT_GENOME229203.fna.gz0.0010765760.0002370031.2161540760.00978396320955333692 0 50.303437730.0353782110.00106560.6583143270.0059237670.9919390950.997313032FALSE1767.3522727270.2552009790.77398948918 6 4 42 919792290.9960350522426046 GUT_GENOME229203d__Bacteria;p__Bacteroidota;c__Bacteroidia;o__Bacteroidales;f__Bacteroidaceae;g__Prevotella;s__Pre-
votella

GUT_GENOME140701.fna.gzLac-
to-
bacil-
lus_H
mu-
cosae

0.0067950420.000225531.0234028470.003734144236966912 9 0 18.313603260.0119028260.0053636180.5949175750.0018243370.9594807240.960582219FALSE15489.285714290.7266585790.98464608451550149383 9190102240.96819350225547576GUT_GENOME140701d__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus_H;s__Lactobacillus_H
mu-
cosae

Lac-
to-
bacil-
lus_H

GUT_GENOME001416.fna.gzVago-
coc-
cus
teu-
beri

0.0012036340.0001957510.9321350430.001248896225816150 4 0 37.872330520.025258550.0010526260.5609206990.0011094880.9911653340.991586033FALSE4 6.251 1 21 20 19 5 773177360.9769606932166224 GUT_GENOME001416d__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Vagococcaceae;g__Vagococcus;s__Vagococcus
teu-
beri

Vago-
coc-
cus

100 Chapter 1. Contents

inStrain, Release 1.0.0

1.9 Acknowledgements

1.9.1 People

InStrain was developed by Matt Olm and Alex Crits-Christoph in the Banfield Lab at the University of California,
Berkeley.

Special thanks to all those who have provided feedback on GitHub and otherwise, especially early adopters Keith
Bouma-Gregson, Ben Siranosian, Yue “Clare” Lou, Naïma Madi, and Antônio Pedro Camargo.

Many of the ideas in Important concepts were honed over many years during countless discussions with members of
the Banfield Lab, the Sonnenburg Lab, and others. Special thanks to Christopher Brown, Keith Bouma-Gregson, Yue
“Clare” Lou, Spencer Diamond, Alex Thomas, Patrick West, Alex Jaffe, Bryan Merrill, Matt Carter, and Dylan Dahan.

1.9.2 Software

InStrain relies on several previously published programs and python modules to run - see here and here for a full
list of dependencies. Of special importance are samtools (the basis for parsing .bam files) and coverM (the heart of
quick_profile).

While not a direct dependency, the open-source program anvi’o was used as significant inspiration for several imple-
mentation details, especially related to multiprocessing efficiency and memory management.

1.9.3 Citation

The manuscript describing inStrain is available in Nature Biotechnology and on bioRxiv and can be cited as follows:

Olm, M.R., Crits-Christoph, A., Bouma-Gregson, K., Firek, B.A., Morowitz, M.J.,
→˓Banfield, J.F., 2021. inStrain profiles population microdiversity from metagenomic
→˓data and sensitively detects shared microbial strains. Nature Biotechnology. https:/
→˓/doi.org/10.1038/s41587-020-00797-0

1.9. Acknowledgements 101

mailto:mattolm@berkeley.edu
mailto:crits-christoph@berkeley.edu
https://geomicrobiology.berkeley.edu/
https://github.com/MrOlm/inStrain/issues
https://geomicrobiology.berkeley.edu/
https://sonnenburglab.stanford.edu/
https://github.com/MrOlm/inStrain/blob/master/setup.py
https://bioconda.github.io/recipes/instrain/README.html
http://www.htslib.org
https://github.com/wwood/CoverM
http://merenlab.org/software/anvio/
https://doi.org/10.1038/s41587-020-00797-0
https://www.biorxiv.org/content/10.1101/2020.01.22.915579v1

inStrain, Release 1.0.0

102 Chapter 1. Contents

Index

A
ANI, 4

B
bam file, 6
breadth, 5

C
clonality, 5
conANI, 4
contig, 6
coverage, 5

D
divergent site, 5
dN/dS, 6

E
expected breadth, 6

F
fasta file, 6

G
genes file, 6
Genome database, 5

I
inStrain profile, 7
iRep, 6

L
linkage, 5

M
mapQ score, 7
microdiversity, 5
mismapped read, 6
mm, 7

multi-mapped read, 6
mutation type, 6

N
nucleotide diversity, 5
null model, 7

P
pN/pS, 6
popANI, 4

R
relative abundance, 6

S
scaffold, 6
scaffold-to-bin file, 6
SNP, 5
SNS, 5
SNV, 5
Species representative genome, 5

103

	Contents
	Installation
	Glossary & FAQ
	Important concepts
	Tutorial
	User Manual
	Expected output
	Raw data access and API
	Benchmarks
	Acknowledgements

	Index

