
inStrain
Release 1.0.0

Aug 19, 2020

Contents

1 Contents 3
1.1 Installation . 3
1.2 Overview and FAQ . 4
1.3 Tutorial . 7
1.4 Program documentation . 15
1.5 Example output and explanations . 24
1.6 Advanced use . 43

i

ii

inStrain, Release 1.0.0

InStrain is a tool for analysis of co-occurring genome populations from metagenomes that allows highly accurate
genome comparisons, analysis of coverage, microdiversity, and linkage, and sensitive SNP detection with gene local-
ization and synonymous non-synonymous identification

Source code is available on GitHub.

Publication is available on bioRxiv

See links to the left for Installation instructions

Comments and suggestions can be sent to Matt Olm and/or Alex Crits-Christoph

Bugs reports and feature requests can be submitted through GitHub.

Contents 1

https://github.com/MrOlm/instrain
https://www.biorxiv.org/content/10.1101/2020.01.22.915579v1
mailto:mattolm@berkeley.edu
mailto:crits-christoph@berkeley.edu
https://github.com/MrOlm/instrain/issues

inStrain, Release 1.0.0

2 Contents

CHAPTER 1

Contents

1.1 Installation

1.1.1 Installation

InStrain is written in python. There are a number of ways that is can be installed.

Pip

To install inStrain using the PyPi python repository, simply run

$ pip install instrain

That’s it!

Pip is a great package with many options to change the installation parameters in various ways. For details, see pip
documentation

Bioconda

To inStrain inStrain from bioconda, run

$ conda config --add channels bioconda; conda install instrain

From Source

To install inStrain from the source code, run

3

https://packaging.python.org/installing/
https://packaging.python.org/installing/
https://anaconda.org/bioconda/instrain

inStrain, Release 1.0.0

$ git clone https://github.com/MrOlm/instrain.git

$ cd instrain

$ pip install .

Dependencies

inStrain requires a few other programs to run. Not all dependencies are needed for all operations. There are a number
of python package dependencies, but those should install automatically when inStrain is installed using pip

Essential

• samtools This is needed for pysam

Optional

• coverM This is needed for the quick_profile operation

• Prodigal This is needed to profile on a gene by gene level

1.1.2 Docker image

A Docker image with inStrain and dependencies already installed is available on Docker Hub at mattolm/instrain. This
image also has a wrapper script in it to make it easier to use inStrain with AWS. See the docker folder of the GitHub
page for use instructions.

1.1.3 Quick Start

1.2 Overview and FAQ

1.2.1 Overview

When you sequence any microbial genome(s), you sequence a population of cells. This population may be a nearly
clonal population grown up from an isolate in a culture flask, or a highly heterogenous population in the real world,
but there is always real biological genetic hetereogeneity within that population - every cell does not have the same
genotype at every single position.

InStrain is a program for measuring, comparing, and interrogating the genetic heterogeneity of microbial pop-
ulations in and between metagenomic samples. We refer to these intraspecific differences as “microdiversity”

1.2.2 FAQ (Frequently asked questions)

How does inStrain compare to other bioinformatics tools for strains analysis?

What can inStrain do?

inStrain includes calculation of nucleotide diversity, calling SNPs (including non-synonymous and synonymous vari-
ants), reporting accurate coverage / breadth, and calculating linkage disequilibrium in the contexts of genomes, contigs,
and individual genes.

4 Chapter 1. Contents

http://www.htslib.org
https://github.com/wwood/CoverM
https://github.com/hyattpd/Prodigal
https://hub.docker.com/repository/docker/mattolm/instrain
https://github.com/MrOlm/inStrain/tree/v1.3.0/docker
https://github.com/MrOlm/inStrain/tree/v1.3.0/docker

inStrain, Release 1.0.0

inStrain also includes comparing the frequencies of fixed and segregating variants between sequenced populations
with extremely high accuracy, out-performing other popular strain-resolved metagenomics programs.

The typical use-case is to generate a .bam file by mapping metagenomic reads to a bacterial genome that is present in
the metagenomic sample, and using inStrain to characterize the microdiversity present.

Another common use-case is detailed strain comparisons that involves comparing the genetic diversity of two popu-
lations and calculating the extent to which they overlap. This allows for the calculation of population ANI values for
extremely similar genomic populations (>99.999% average nucleotide identity).

See also:

Installation To get started using the program

module_descriptions For descriptions of what the modules can do

Example output and explanations To view example output

preparing_input For information on how to prepare data for inStrain

choosing_parameters For detailed information on how to make sure inStrain is running correctly

When should I use inStrain?

inStrain is intended to be used as a genome-resolved metagenomics approach. Genome-resolved metagenomics in-
volves sequencing and de novo assembly of the actual microbial genomes present in the sample(s) of interest. It
is these microbial genomes, and not microbial genomes derived from reference databases, that we will then use as
scaffolds on which to map reads from the sample.

We don’t recommend using reference genomes for strain-resolved inferences in metagenomes. This is because refer-
ence databases have usually poorly sampled the true extent of microbial diversity below the species level across many
environments. Using even partially inaccurate references can lead to inaccurate conclusions about the genetic variation
within your samples.

inStrain can be run on individual microbial genomes assembled and binned from a metagenome, sets of de-replicated
microbial genomes, or entire metagenomic assemblies at once.

1.2. Overview and FAQ 5

inStrain, Release 1.0.0

When should I probably not use inStrain?

When you have not assembled genomes from the metagenomic samples you are interrogating; when breadth and
coverage of the consensus genome are low; when you wish to compare populations that are <95% ANI with each
other; when you are interested in species-level community composition, not intra-population diversity.

How does inStrain work?

The reasoning behind inStrain is that every sequencing read is derived from a single DNA molecule (and thus a
single cell) in the original population of a given microbial species. During assembly, the consensus of these reads
are assembled into contigs and these contigs are binned into genomes - but by returning to assess the variation in the
reads that assembled into the contigs, we can characterize the genetic diversity of the population that contributed to
the contigs and genomes.

The basic steps:

1. Map reads to a .fasta file to create a .bam file

2. Stringently filter mapped reads and calculate coverage and breadth

3. Calculate nucleotide diversity and SNPs

4. Calculate SNP linkage

5. Optional: calculate gene statistics and SNP function

6. Optional: compare SNPs between samples.

What is unique about the way that inStrain compares strains?

Most strain-resolved pipelines compare the dominant allele at each position. If you have two closely related strains
A and B in sample 1, with B being at higher abundance, and two closely related strains A and C in sample 2, with C
being at higher abundance, most strain comparison pipelines will in actuality compare strain B and C. This is because
they work on the principle of finding the dominant strain in each sample and then comparing the dominant strains.
inStrain, on the other hand, is able to identify the fact that A is present in both samples. This is because it doesn’t
just compare the dominant alleles, but compares all alleles in the two populations. See doc:module_descriptions and
choosing_parameters for more information.

What is a population?

To characterize intra-population genetic diversity, it stands to reason that you first require an adequate def-
inition of “population”. inStrain relies mainly on population definitions that are largely technically lim-
ited, but also coincide conveniently with possibly biological real microbial population constraints (link1.
‘link2<https://www.nature.com/articles/s41467-018-07641-9>‘_.). Often, we dereplicate genomes from an envi-
ronment at average nucleotide identities (ANI) from 95% to 99%, depending on the hetereogeneity expected within
each sample - lower ANIs might be preferred with more complex samples. We then assign reads to each genome’s
population by stringently requiring that combined read pairs for SNP calling be properly mapped pairs with an simi-
larity to the consensus of at least 95% by default, so that the cell that the read pair came from was at least 95% similar
to the average consensus genotype at that position. Within environment, inStrain makes it possible to adjust these
parameters as needed and builds plots which can be used to estimate the best cutoffs for each project.

1.2.3 Glossary of terms used in inStrain

Community The collection of taxa in a metagenome, i.e. the species diversity of a microbiome.

6 Chapter 1. Contents

https://msystems.asm.org/content/5/1/e00731-19

inStrain, Release 1.0.0

Population The collection of cells for each taxa in a metagenome, i.e. the genetic diversity of each species or sub-
species in a microbiome.

Note: inStrain is for characterizing metagenomes at the population level, not at the community level.

SNP A SNP is a Single Nucleotide Polymorphism, a genetic variant of a single nucleotide change that some per-
centage of the cells that comprise a species population. We identify and call SNPs using a simple model to
distinguish them from errors, and more importantly in our experience, careful read mapping and filtering of
paired reads to be assured that the variants (and the reads that contain them) are truly from the species being
profiled, and not from another species in the metagenome (we call it ‘mismapping’ when this happens). Note
that a SNP refers to genetic variation within a read set.

SNV Single nucleotide variant - in inStrain used interchangeably with SNP

Microdiversity We use the term microdiversity to refer to intraspecific genetic variation, i.e. the genetic variation
between cells within a microbial species. To measure this, we calculate a per-site nucleotide diversity of all reads
- thus this metric is slightly influenced by sequencing error, but within study error rates should be consistent,
and this effect is extremely minor compared to the extent of biological variation observed within samples. The
metric of nucleotide diversity (often referred to as ‘pi’ in the population genetics world) is from Nei and Li 1979,
calculated per site and then averaged across all sites.

Clonality This is just 1 - microdiversity

refSNP A genetic difference between the consensus of a read set and a reference genome. This is in contrast to SNPs,
which are variants within a population being studied - reference SNPs are differences between the population
you are studying (your reads) and the genome that you are mapping to. If you are mapping to a genome that
was assembled from that sample, there will be very few to no refSNPs, because the consensus of that genome
was built from the consensus of the reads in that sample. However, refSNPs are useful to track and understand
cross-mapping, and we also use the percentage of refSNPs per read pair to filter read mappings.

popANI Calculated by inStrain compare function between two different inStrain profiles.

N SNP A polymorphic variant that changes the amino acid code of the protein encoded by the gene in which it resides;
non-synonymous.

S SNP A polymoprhic variant that does not change the amino acid code of the protein encoded by the gene in which
it resides; synonymous.

ANI Average nucleotide identity. The average nucleotide distance between two genomes or .fasta files. If two
genomes have a difference every 100 base-pairs, the ANI would be 99%

fasta file A file containing a DNA sequence. Details on this file format can be found on wikipedia

bam file A file containing metagenomic reads mapped to a DNA sequence. Very similar to a .sam file. Details can be
found online

1.3 Tutorial

1.3.1 Quick Start

The functionality of inStrain is broken up into several core modules. For more details on these modules, see mod-
ule_descriptions.:

$ inStrain -h

...::: inStrain v1.3.0 :::...
(continues on next page)

1.3. Tutorial 7

https://en.wikipedia.org/wiki/FASTA_format
https://samtools.github.io/hts-specs/SAMv1.pdf

inStrain, Release 1.0.0

(continued from previous page)

Matt Olm and Alex Crits-Christoph. MIT License. Banfield Lab, UC Berkeley. 2019

Choose one of the operations below for more detailed help. See https://instrain.
→˓readthedocs.io for documentation.
Example: inStrain profile -h

Workflows:
profile -> Create an inStrain profile (microdiversity analysis) from a

→˓mapping.
compare -> Compare multiple inStrain profiles (popANI, coverage_overlap,

→˓etc.)

Single operations:
profile_genes -> Calculate gene-level metrics on an inStrain profile
genome_wide -> Calculate genome-level metrics on an inStrain profile
quick_profile -> Quickly calculate coverage and breadth of a mapping using coverM
filter_reads -> Commands related to filtering reads from .bam files
plot -> Make figures from the results of "profile" or "compare"
other -> Other miscellaneous operations

Below is a list of brief descriptions of each of the modules. For more information see module_descriptions, for help un-
derstanding the output, see Example output and explanations, and to change the parameters see choosing_parameters

See also:

module_descriptions for more information on the modules

Example output and explanations to view example output

choosing_parameters for guidance changing parameters

preparing_input for information on how to prepare data for inStrain

profile

inStrain profile is the main method of the program. It takes a .fasta file and a .bam file (consisting of reads mapping
to the .fasta file) and runs a series of steps to characterize the microdiversity, SNPs, linkage, etc. Details on how to
generate the mapping, how the profiling is done, explanations of the output, how to choose the parameters can be
found at preparing_input and module_descriptions

To run inStrain on a mapping run the following command:

$ inStrain profile .bam_file .fasta_file -o IS_output_name

compare

inStrain is able to compare multiple read mappings to the same .fasta file. Each mapping file must first be make into
an inStrain profile using the above command. The coverage overlap and popANI between all pairs is calculated:

$ inStrain compare -i IS_output_1 IS_output_2 IS_output_3

8 Chapter 1. Contents

inStrain, Release 1.0.0

profile_genes

Once you’ve run inStrain profile, you can also calculate gene-wise microdiversity, coverage, and SNP functions using
this command. It relies on having gene calls in the .fna format from the program prodigal:

$ inStrain profile_genes -i IS_output -g called_genes.fna

genome_wide

This module is able to translate scaffold-level results to genome-level results. If the .fasta file you mapped to consists
of a single genome, running this module on its own will average the results among all scaffolds. If the .fasta file you
mapped to consists of several genomes, by providing a scaffold to bin file or a list of the individual .fasta files making
up the combined .fasta file, you can get summary results for each individual genome. Running this module is also
required before generating plots.:

$ inStrain genome_wide -i IS_output -s genome1.fasta genome2.fasta genome3.fasta

quick_profile

This auxiliary module is merely a quick way to calculate the coverage and breadth using the blazingly fast program
coverM. This can be useful for quickly figuring out which scaffolds have any coverage, and then generating a list of
these scaffolds to profile with inStrain profile, making it run faster:

$ inStrain quick_profile -b .bam_file -f .fasta_file -s scaffold_to_bin_file -o
→˓output_name

filter_reads

This auxiliary module lets you do various tasks to filter and/or characterize a mapping file, and then generate a new
mapping file with those filters applied:

$ inStrain filter_reads .bam_file .fasta_file -g new_sam_file_location

plot

This method makes a number of plots from an inStrain object. It is required that you run genome_wide first before
running this module:

$ inStrain plot -i IS_output

other

This module lets you do random small things, like convert IS_profile objects that are in an old format to the newest
format.

1.3. Tutorial 9

https://github.com/wwood/CoverM

inStrain, Release 1.0.0

1.3.2 Running inStrain with custom genomes

The following tutorial goes through an example run of inStrain using your own set of genomes. You can fol-
low along with your own data, or use a small set of reads that are included in the inStrain install for test-
ing. They can be found in the folder test/test_data/ of your install folder, or can be downloaded from the in-
Strain source code at this link on GitHub. The only files that you’ll need for this tutorial are forward and re-
verse metagenomic reads (N5_271_010G1.R1.fastq.gz and N5_271_010G1.R2.fastq.gz) and a .fasta file to map to
(N5_271_010G1_scaffold_min1000.fa). In case you’re curious, these metagenomic reads come from a premature
infant fecal sample.

See also:

Overview and FAQ To get started using the program

Program documentation For descriptions of what the modules can do and information on how to prepare data for
inStrain

Example output and explanations To view example output

Advanced use For detailed information on how to rationally adjust inStrain parameters

Preparing .bam and .fasta files

After downloading the genome file that you would like to profile (.fasta file) and at least one set of paired reads, the
first thing to do is to map the reads to the .fasta file in order to generate a .bam file.

When this mapping is performed it is important that you map to all genomes simultaneously, so the first thing to do
is to combine all of the genomes that you’d like to map into a single .fasta file. In our case our .fasta file already has
all of the genomes that we’d like to profile within it, but if you did want to profile a number of different genomes, you
could combine them using a command like this

$ cat raw_data/S2_002_005G1_phage_Clostridioides_difficile.fasta raw_data/S2_018_
→˓020G1_bacteria_Clostridioides_difficile.fasta > allGenomes_v1.fasta

Next we must map our reads to this .fasta file to create .bam files. In this tutorial we will use the mapping program
Bowtie 2

$ mkdir bt2

$ bowtie2-build ~/Programs/inStrain/test/test_data/N5_271_010G1_scaffold_min1000.fa
→˓bt2/N5_271_010G1_scaffold_min1000.fa

$ bowtie2 -p 6 -x bt2/N5_271_010G1_scaffold_min1000.fa -1 ~/Programs/inStrain/test/
→˓test_data/N5_271_010G1.R1.fastq.gz -2 ~/Programs/inStrain/test/test_data/N5_271_
→˓010G1.R2.fastq.gz > N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.sam

At this point we have generated a .sam file, the precursor to .bam files. Lets make sure it’s there and not empty

$ ls -lht

total 34944
-rw-r--r-- 1 mattolm staff 16M Jan 23 11:56 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.sam
drwxr-xr-x 8 mattolm staff 256B Jan 23 11:54 bt2/

Perfect. At this point we could convert the .sam file to a sorted and indexed .bam file, but since inStrain can do that
for us automatically we won’t bother.

10 Chapter 1. Contents

https://github.com/MrOlm/inStrain/tree/master/test/test_data

inStrain, Release 1.0.0

Preparing genes file

If we want inStrain to do gene-level profiling we need to give it a list of genes to profile. Note - this is an optional
step that is not required for inStrain to work in general, but without this you will not get gene-level profiles

We will profile our genes using the program prodigal, which can be run using the following example command

$ prodigal -i ~/Programs/inStrain/test/test_data/N5_271_010G1_scaffold_min1000.fa -d
→˓N5_271_010G1_scaffold_min1000.fa.genes.fna

Preparing for genome-level characterization

In the step above (“Preparing .bam and .fasta files”), we combined all of our genomes into a single .fasta file for
mapping. However we likely want to profile the microdiversity of the individual genomes in that .fasta file. In order
to do that we need to tell inStrain which scaffolds belong to which genomes.

There are two ways of providing this information. One is to give inStrain a list of the .fasta files that went into making
the concatenated .fasta file. The other is to provide inStrain with a “scaffold to bin” file, which lists the genome
assignment of each scaffold in a tab-delimited file. In this case we’re going to use the scaffold to bin file provided by
inStrain (called “N5_271_010G1.maxbin2.stb”). Here’s what it looks like

$ head ~/Programs/inStrain/test/test_data/N5_271_010G1.maxbin2.stb
N5_271_010G1_scaffold_0 maxbin2.maxbin.001.fasta
N5_271_010G1_scaffold_1 maxbin2.maxbin.001.fasta
N5_271_010G1_scaffold_2 maxbin2.maxbin.001.fasta
N5_271_010G1_scaffold_3 maxbin2.maxbin.001.fasta
N5_271_010G1_scaffold_4 maxbin2.maxbin.001.fasta

Running inStrain profile

Now that we’ve gotten everything set up, it’s time to run inStrain. To see all of the options, run

$ inStrain -h

A long list of arguments and options will show up. For more details on what these do, see Program documentation.
The only arguments that are absolutely required, however, are a .sam or .bam mapping file, and the .fasta file that the
mapping file is mapped to.

Note: In this case we’re going to have inStrain profile the mapping, call genes, make the results genome wide, and plot
the results all in one command. It is possible to do these all as separate steps, however, using the subcommands “in-
Strain profile”, “inStrain profile_genes”, “inStrain genome_wide”, and “inStrain plot”. See Program documentation
for more information.

Using all of the files we generated above, here is going to be our inStrain command

$ inStrain profile N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.sam ~/Programs/
→˓inStrain/test/test_data/N5_271_010G1_scaffold_min1000.fa -o N5_271_010G1_scaffold_
→˓min1000.fa-vs-N5_271_010G1.IS -p 6 -g N5_271_010G1_scaffold_min1000.fa.genes.fna -s
→˓~/Programs/inStrain/test/test_data/N5_271_010G1.maxbin2.stb

You should see the following as inStrain runs (should only take a few minutes)

1.3. Tutorial 11

inStrain, Release 1.0.0

You gave me a sam- I'm going to make it a .bam now
Converting N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.sam to N5_271_010G1_
→˓scaffold_min1000.fa-vs-N5_271_010G1.bam
samtools view -S -b N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.sam > N5_271_
→˓010G1_scaffold_min1000.fa-vs-N5_271_010G1.bam
sorting N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.bam
samtools sort N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.bam -o N5_271_010G1_
→˓scaffold_min1000.fa-vs-N5_271_010G1.sorted.bam
Indexing N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.sorted.bam
samtools index N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.sorted.bam N5_271_
→˓010G1_scaffold_min1000.fa-vs-N5_271_010G1.sorted.bam.bai

..:: inStrain profile Step 1. Filter reads ::..

Getting read pairs: 100%|| 178/178 [00:00<00:00, 715.57it/s]
Making read report
/Users/mattolm/.pyenv2/versions/3.6.9/lib/python3.6/site-packages/numpy/core/
→˓fromnumeric.py:3335: RuntimeWarning: Mean of empty slice.
out=out, **kwargs)

/Users/mattolm/.pyenv2/versions/3.6.9/lib/python3.6/site-packages/numpy/core/_methods.
→˓py:161: RuntimeWarning: invalid value encountered in double_scalars
ret = ret.dtype.type(ret / rcount)

Filtering reads
1,727 read pairs remain after filtering

.:: inStrain profile Step 2. Profile scaffolds ::..

Profiling scaffolds: 100%|| 23/23 [00:06<00:00, 3.44it/s]
Storing output

.:: inStrain profile Step 3. Profile genes ::..

20.67703568161025% of the input 1093 genes were marked as incomplete
161 scaffolds with genes, 169 in the IS, 153 to compare
Running gene-level calculations on scaffolds: 100%|| 153/153 [00:18<00:00, 8.16it/s]

.:: inStrain profile Step 4. Make genome-wide ::..

Scaffold to bin was made using .stb file
85.66% of scaffolds have a genome
93.82% of scaffolds have a genome

.:: inStrain profile Step 5. Generate plots ::..

making plots 1, 2, 3, 4, 5, 6, 7, 8, 9
85.66% of scaffolds have a genome
Plotting plot 1
Plotting plot 2
85.66% of scaffolds have a genome
Plotting plot 3
57.37% of scaffolds have a genome
Plotting plot 4

(continues on next page)

12 Chapter 1. Contents

inStrain, Release 1.0.0

(continued from previous page)

97.33% of scaffolds have a genome
Plotting plot 5
93.82% of scaffolds have a genome
Plotting plot 6
Plotting plot 7
97.33% of scaffolds have a genome
Plotting plot 8
93.96% of scaffolds have a genome
Plotting plot 9
$$

..:: inStrain profile finished ::..

Output tables........ /Users/mattolm/Programs/testing_house/tutorial/N5_271_010G1_
→˓scaffold_min1000.fa-vs-N5_271_010G1.IS/output/
Figures.............. /Users/mattolm/Programs/testing_house/tutorial/N5_271_010G1_
→˓scaffold_min1000.fa-vs-N5_271_010G1.IS/figures/

See documentation for output descriptions - https://instrain.readthedocs.io/en/latest/

$$

The last note shows you where the plots and figures have been made. Here’s a list of the files that you should see

$ ls -lht N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.IS/output/
total 512
-rw-r--r-- 1 mattolm staff 545B Jan 23 15:16 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_genomeWide_mapping_info.tsv
-rw-r--r-- 1 mattolm staff 602B Jan 23 15:16 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_genomeWide_scaffold_info.tsv
-rw-r--r-- 1 mattolm staff 25K Jan 23 15:16 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_SNP_mutation_types.tsv
-rw-r--r-- 1 mattolm staff 125K Jan 23 15:16 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_gene_info.tsv
-rw-r--r-- 1 mattolm staff 19K Jan 23 15:16 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_mapping_info.tsv
-rw-r--r-- 1 mattolm staff 14K Jan 23 15:16 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_linkage.tsv
-rw-r--r-- 1 mattolm staff 26K Jan 23 15:16 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_SNVs.tsv
mattolm@Matts-MacBook-Pro-3:~/Programs/testing_house/tutorial$ caffold_min1000.fa-vs-
→˓N5_271_010G1.IS_scaffold_info.tsv

$ ls -lht N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.IS/figures
total 7792
-rw-r--r-- 1 mattolm staff 432K Jan 23 15:17 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_GeneHistogram_plot.pdf
-rw-r--r-- 1 mattolm staff 422K Jan 23 15:17 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_LinkageDecay_types_plot.pdf
-rw-r--r-- 1 mattolm staff 448K Jan 23 15:17 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_ScaffoldInspection_plot.pdf
-rw-r--r-- 1 mattolm staff 419K Jan 23 15:16 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_ReadFiltering_plot.pdf
-rw-r--r-- 1 mattolm staff 421K Jan 23 15:16 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_LinkageDecay_plot.pdf
-rw-r--r-- 1 mattolm staff 420K Jan 23 15:16 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_MajorAllele_frequency_plot.pdf

(continues on next page)

1.3. Tutorial 13

inStrain, Release 1.0.0

(continued from previous page)

-rw-r--r-- 1 mattolm staff 419K Jan 23 15:16 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_readANI_distribution.pdf
-rw-r--r-- 1 mattolm staff 443K Jan 23 15:16 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_genomeWide_microdiveristy_metrics.pdf
-rw-r--r-- 1 mattolm staff 419K Jan 23 15:16 N5_271_010G1_scaffold_min1000.fa-vs-
→˓N5_271_010G1.IS_CoverageAndBreadth_vs_readMismatch.pdf

For help interpreting these output files, see Example output and explanations

inStrain compare

inStrain compare allows you to compare genomes that have been profiled by multiple mappings. To compare a genome
in multiple samples, you must first map reads from multiple samples to the same .fasta file, then run run ‘inStrain
profile on each mapping.

In this tutorial we profiled reads mapped to the .fasta file “N5_271_010G1_scaffold_min1000.fa”. Provided in the in-
Strain test_data folder (<https://github.com/MrOlm/inStrain/tree/master/test/test_data>) is also a different set of reads
mapped to the same .fasta file. We’ve also already run inStrain on this mapping for you! The resulting inStrain profile
is the folder N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G2.IS/

To compare these inStrain profiles we will use the following command

$ inStrain compare -i N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.IS/ ~/Programs/
→˓inStrain/test/test_data/N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G2.IS/ -o N5_
→˓271_010G1_scaffold_min1000.fa.IS.COMPARE -p 6

Loading N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.IS/
Loading /Users/mattolm/Programs/inStrain/test/test_data/N5_271_010G1_scaffold_
→˓min1000.fa-vs-N5_271_010G2.IS/
Warning! Your inStrain folder is from version 1.0.0, while the installed version is
→˓1.2.1.
If you experience weird behavior, this might be why
169 of 178 scaffolds are in at least 2 samples
Profiling scaffolds: 100%|| 169/169 [00:22<00:00, 7.38it/s]

You should now have the following output file created

$ ls -lht N5_271_010G1_scaffold_min1000.fa.IS.COMPARE/output/
total 64
-rw-r--r-- 1 mattolm staff 30K Jan 23 15:20 N5_271_010G1_scaffold_min1000.fa.IS.
→˓COMPARE_comparisonsTable.tsv

This file shows the comparison values between scaffolds, however. To make these on the genome level, we can run
inStrain genome_wide

$ inStrain genome_wide -i N5_271_010G1_scaffold_min1000.fa.IS.COMPARE/ -s ~/Programs/
→˓inStrain/test/test_data/N5_271_010G1.maxbin2.stb
Scaffold to bin was made using .stb file
89.62% of scaffolds have a genome

Now we should also have a table that compares these genomes on the genome level

$ ls -lht N5_271_010G1_scaffold_min1000.fa.IS.COMPARE/output/
total 72

(continues on next page)

14 Chapter 1. Contents

https://github.com/MrOlm/inStrain/tree/master/test/test_data

inStrain, Release 1.0.0

(continued from previous page)

-rw-r--r-- 1 mattolm staff 556B Jan 23 15:23 N5_271_010G1_scaffold_min1000.fa.IS.
→˓COMPARE_genomeWide_compare.tsv
-rw-r--r-- 1 mattolm staff 30K Jan 23 15:20 N5_271_010G1_scaffold_min1000.fa.IS.
→˓COMPARE_comparisonsTable.tsv

Finally, we can also plot these results using the inStrain plot function

$ inStrain plot -i N5_271_010G1_scaffold_min1000.fa.IS.COMPARE/
making plots 10
89.62% of scaffolds have a genome
Plotting plot 10
Done!

This should make a figure in the figures folder

$ ls -lht N5_271_010G1_scaffold_min1000.fa.IS.COMPARE/figures/
total 936
-rw-r--r-- 1 mattolm staff 419K Jan 23 15:25 N5_271_010G1_scaffold_min1000.fa.IS.
→˓COMPARE_inStrainCompare_dendrograms.pdf

As before, for help interpreting this output see Example output and explanations .

1.3.3 Running inStrain with public reference genomes

The following tutorial goes through running inStrain with a set of publically available reference genomes.

1.4 Program documentation

1.4.1 Preparing input

There are two simple inputs to inStrain: a .fasta file and a mapping file in .bam format. A third, a prodigal .faa file,
can be used in later steps Here we go over some considerations involved in choosing these inputs.

Preparing the .fasta file

A .fasta file contains the DNA sequences of the contigs that you map your reads to. Choosing what .fasta you will
use (consensus / reference genomes) is extremely important and will affect the interpretation of your inStrain results.
Below we describe the three most common strategies.

Please note that the .fasta file must always be the same as, or a subset of, the .fasta file used to create the .bam file, i.e.
the .fasta file that reads were mapped to.

Using a collection of genomes (recommended)

The recommended workflow for running inStrain:

1. Assemble reads into contigs for each sample collected from the environment. Recommended software:
IDBA_UD, MEGAHIT, metaSPADES.

2. Bin genomes out of each assembly using differential coverage binning. Recommended software: Bowtie2 (for
mapping), MetaBAT, CONCOCT, DasTOOL (for binning).

1.4. Program documentation 15

inStrain, Release 1.0.0

3. Dereplicate the entire set of genomes that you would like to profile (all genomes from all environments) at
97-99% identity, and filter out low quality genomes. Recommended software: dRep, checkM.

4. Create a bowtie2 index of the representative genomes from this dereplicated set and map reads to this set from
each sample: Recommended software: Bowtie2

5. Profile the resulting mapping .bam files using inStrain.

6. Use inStrain genome_wide to calculate genome-level microdiveristy metrics for each originally binned genome.

The most important aspect of this workflow is to map to many genomes at once. Mapping to just one genome at
a time is highly discouraged, because this encourages mismapped reads from other genomes to be recruited by this
genome. By including many (dereplicated) genomes in your bowtie2 index, you will be able to far more accurately
filter out mismapped reads and reduce false positive SNPs.

For more information on this, see choosing_parameters

Using a single genome .FASTA file

If your .fasta file is a single genome, the main consideration is that it should be a good representitive genome for some
organism in your sample. Ideally, it was assembled directly from that sample, isolated from that sample, or you have
some other evidence that this genome is highly representation of a species in that sample. Regardless, you should
check your inStrain plot output and scaffold_info.tsv output file to be sure that your inStrain run had decent coverage
and breadth of coverage of the genome that you use before attempting to interpret the results.

Remember, your .fasta file can be a subset of the .fasta file that was used to create the .bam file. You can create a
BAM with all dereplicated genomes from your environment, but then just pass a .fasta file for only the genomes of
particular interest. This approach is recommended as opposed to creating a BAM for just each genome, as it reduces
mismapping.

Using a metagenomic assembly

You can also pass inStrain an entire metagenomic assembly from a sample, including either binned or unbinned
contigs. In this case, the output inStrain profile will include population information for each contig in the set. To then
break it down by microbial genome / species, You can use inStrain genome_wide including a scaffold to bin
file to generate results by genome.

Preparing the .bam file

inStrain requires paired-end Illumina read sequencing. We recommend using Bowtie2 to map your reads to your
genome.

Bowtie2 default parameters are what we use for mapping, but it may be worth playing around with them to see how
different settings perform on your data. It is important to note that the -X flag (capital X) is the expected insert length
and is by default 500. In many cases (e.g., 2x250 bp or simply datasets with longer inserts) it may be worthwhile to
increase this value up to -X 1000 for passing to bowtie2.

Preparing the prodigal .fna genes file for gene-level profiling

You can run prodigal on your .fasta file to generate the .fna file with the gene-level information that inStrain pro-
file_genes requires.

Example:

$ prodigal -i assembly.fasta -d genes.fna

16 Chapter 1. Contents

inStrain, Release 1.0.0

1.4.2 Module descriptions

The functionality of inStrain is broken up into modules. To see a list of available modules, check the help:

$ inStrain -h

...::: inStrain v1.0.0 :::...

Matt Olm and Alex Crits-Christoph. MIT License. Banfield Lab, UC Berkeley. 2019

Choose one of the operations below for more detailed help. See https://instrain.
→˓readthedocs.io for documentation.
Example: inStrain profile -h

profile -> Create an inStrain profile (microdiversity analysis) from a
→˓mapping.
compare -> Compare multiple inStrain profiles (popANI, coverage_overlap, etc.
→˓)
profile_genes -> Calculate gene-level metrics on an inStrain profile
genome_wide -> Calculate genome-level metrics on an inStrain profile
quick_profile -> Quickly calculate coverage and breadth of a mapping using coverM
filter_reads -> Commands related to filtering reads from .bam files
plot -> Make figures from the results of "profile" or "compare"
other -> Other miscellaneous operations

IS_profile

An IS_profile (inStrain profile) is created by running the inStrain profile command. It contains all of the program’s
internal workings, cached data, and output is stored. Additional modules can then be run on an IS_profile (to analyze
genes, compare profiles, etc.), and there is lots of nice cached data stored in it that can be accessed using python.

Example output and explanations For help finding where the output from your run is located in the IS_profile

Advanced use For access to the raw internal data (which can be very useful)

profile

The most complex part of inStrain, and must be run before any other modules can be. The functionality of profile is
broken into several steps.

First, all reads in the .bam file are filtered to only keep those that map with sufficient quality. Reads must be paired
(all non-paired reads will be filtered out) and an additional set of filters are applied to the read pair (not the individual
reads). Command line parameters can be adjusted to change the specifics, but in general:

• Pairs must be mapped in the proper orientation with an expected insert size. The minimum insert distance can
be set with a command line parameter. The maximum insert distance is a multiple of the median insert distance.
So if pairs have a median insert size of 500bp, by default all pairs with insert sizes over 1500bp will be excluded.

• Pairs must have a minimum mapQ score. MapQ scores are confusing and how they’re calculated varies based
on the mapping algorithm being used, but are meant to represent both the number of mismatches in the mapping
and how unique that mapping is. With bowtie2, if the read maps equally well to two positions on the genome,
its mapQ score will be set to 2. The read in the pair with the higher mapQ is used for the pair.

• Pairs must be above some minimum nucleotide identity (ANI) value. For example if reads in a pair are 100bp
each, and each read has a single mismatch, the ANI of that pair would be 0.99

1.4. Program documentation 17

inStrain, Release 1.0.0

Next, using only read pairs that pass filters, a number of microdiveristy metrics are calculated on a scaffold-by-scaffold
basis. This includes:

• Calculate the coverage at each position along the scaffold

• Calculate the nucleotide diversity at each position along the scaffold in which the coverage is greater than
the min_cov argument. The formula for calculating nucleotide diversity is the sum of the frequency of each
base squared - [(frequency of A)^2 + (frequency of C)^2 + (frequency of G)^2 + (frequency of T)^2]. This
microdiversity definition is nice because it is not effected by coverage

• Identify SNPs. The criteria for being called a SNP are 1) More than min_cov number of bases at that position,
2) More than min_freq percentage of reads that are a variant base, 3) The number of reads with the variant base
is more than the null model for that coverage. The null model describes the probability that the number of true
reads that support a variant base could be due to random mutation error, assuming Q30 score. The default false
discovery rate with the null model is 1e-6 (one in a million)

• Calculate linkage between SNPs on the same read pair. For each pair harboring a SNP, calculate the linkage of
that SNP with other SNPs within that same pair. This is only done for pairs of SNPs that are both on at least
MIN_SNP reads

• Calculate scaffold-level properties. These include things like the overall coverage, breadth of coverage, average
nucleotide identity (ANI) between the reads and the reference genome, and the expected breadth of coverage
based on that true coverage.

Finally, this information is stored as an IS_profile object. This includes the locations of SNPs, the number of read
pairs that passed filters (and other information) for each scaffold, the linkage between SNV pairs, ect.

See also:

Example output and explanations For help interpreting the output

Advanced use For access to the raw internal data (which can be very useful)

choosing_parameters For information about the pitfalls and other things to consider when running inStrain

To see the command-line options, check the help:

$ inStrain profile -h
usage: inStrain profile [-o OUTPUT] [-p PROCESSES] [-d] [-h]

[-l min_read_ani] [--min_mapq MIN_MAPQ]
[--max_insert_relative MAX_INSERT_RELATIVE]
[--min_insert MIN_INSERT] [-c MIN_COV] [-f MIN_FREQ]
[-fdr FDR] [-s MIN_SNP]
[--min_scaffold_reads min_scaffold_reads]
[--store_everything] [--skip_mm_profiling]
[--scaffolds_to_profile SCAFFOLDS_TO_PROFILE]
bam fasta

REQUIRED:
bam Sorted .bam file
fasta Fasta file the bam is mapped to

I/O PARAMETERS:
-o OUTPUT, --output OUTPUT

Output prefix (default: inStrain)

SYSTEM PARAMETERS:
-p PROCESSES, --processes PROCESSES

Number of processes to use (default: 6)
-d, --debug Make extra debugging output (default: False)
-h, --help show this help message and exit

(continues on next page)

18 Chapter 1. Contents

inStrain, Release 1.0.0

(continued from previous page)

READ FILTERING OPTIONS:
-l min_read_ani, --min_read_ani min_read_ani

Minimum percent identity of read pairs to consensus to
use the reads. Must be >, not >= (default: 0.95)

--min_mapq MIN_MAPQ Minimum mapq score of EITHER read in a pair to use
that pair. Must be >, not >= (default: -1)

--max_insert_relative MAX_INSERT_RELATIVE
Multiplier to determine maximum insert size between
two reads - default is to use 3x median insert size.
Must be >, not >= (default: 3)

--min_insert MIN_INSERT
Minimum insert size between two reads - default is 50
bp. If two reads are 50bp each and overlap completely,
their insert will be 50. Must be >, not >= (default:
50)

VARIANT CALLING OPTIONS:
-c MIN_COV, --min_cov MIN_COV

Minimum coverage to call an variant (default: 5)
-f MIN_FREQ, --min_freq MIN_FREQ

Minimum SNP frequency to confirm a SNV (both this AND
the FDR snp count cutoff must be true to call a SNP).
(default: 0.05)

-fdr FDR, --fdr FDR SNP false discovery rate- based on simulation data
with a 0.1 percent error rate (Q30) (default: 1e-06)

OTHER OPTIONS:
-s MIN_SNP, --min_snp MIN_SNP

Absolute minimum number of reads connecting two SNPs
to calculate LD between them. (default: 20)

--min_scaffold_reads min_scaffold_reads
Minimum number of reads mapping to a scaffold to
proceed with profiling it (default: 0)

--store_everything Store intermediate dictionaries in the pickle file;
will result in significantly more RAM and disk usage
(default: False)

--skip_mm_profiling Dont perform analysis on an mm level; saves RAM and
time (default: False)

--scaffolds_to_profile SCAFFOLDS_TO_PROFILE
Path to a file containing a list of scaffolds to
profile- if provided will ONLY profile those scaffolds
(default: None)

compare

Compare provides the ability to compare two IS_profile folders (created by running inStrain profile). Both IS_profile
objects must created based on mapping to the same .bam file for compare to work.

inStrain compare compares a set of different IS_profile folders (created by running inStrain profile). These IS_profile
folders represent sets of different sample reads mapped to the same .fasta file. To use, we recommend assembly and
binning of each sample, and then dereplication of genomes using the software dRep (https://drep.readthedocs.io/) at a
high percent ANI, e.g. 96%-99%. Samples which contain multiple populations of the same dRep cluster (members of
similar species or sub-species) can then be mapped back to the best genome from this dRep cluster, and then inStrain
should be run on these dRep cluster genomes.

1.4. Program documentation 19

https://drep.readthedocs.io/

inStrain, Release 1.0.0

Note: inStrain can only compare read profiles that have been mapped to the same .fasta file

Compare does pair-wise comparisons between each input IS_profile. For each pair, a series of steps are undertaken.

1. All positions in which both IS_profile objects have at least min_cov coverage (5x by default) are identified. This
information can be stored in the output by using the flag –store_coverage_overlap, but due to it’s size, it’s not
stored by default

2. Each position identified in step 1 is compared. If the flag –compare_consensus_bases is used, the consensus base
at each position is compared. That means that if the position is 60% A 40% G in sample 1, and 40% A 60% G in
sample 2, they will considered different. By default, however, this position would be considered the same. The
way that is compares positions is by testing whether the consensus base in sample 1 is detected at all in sample 2
and vice-verse. Detection of an allele in a sample is based on that allele being above the set -min_freq and -fdr.
All detected differences between each pair of samples can be reported if the flag –store_mismatch_locations is
set.

3. The coverage overlap and the average nucleotide identify for each scaffold is reported. For details on how this
is done, see Example output and explanations

To see the command-line options, check the help:

$ inStrain compare -h
usage: inStrain compare -i [INPUT [INPUT ...]] [-o OUTPUT] [-p PROCESSES] [-d]

[-h] [-c MIN_COV] [-f MIN_FREQ] [-fdr FDR]
[-s SCAFFOLDS] [--store_coverage_overlap]
[--store_mismatch_locations]
[--compare_consensus_bases]
[--include_self_comparisons] [--greedy_clustering]
[--g_ani G_ANI] [--g_cov G_COV] [--g_mm G_MM]

REQUIRED:
-i [INPUT [INPUT ...]], --input [INPUT [INPUT ...]]

A list of inStrain objects, all mapped to the same
.fasta file (default: None)

-o OUTPUT, --output OUTPUT
Output prefix (default: instrainComparer)

SYSTEM PARAMETERS:
-p PROCESSES, --processes PROCESSES

Number of processes to use (default: 6)
-d, --debug Make extra debugging output (default: False)
-h, --help show this help message and exit

VARIANT CALLING OPTIONS:
-c MIN_COV, --min_cov MIN_COV

Minimum coverage to call an variant (default: 5)
-f MIN_FREQ, --min_freq MIN_FREQ

Minimum SNP frequency to confirm a SNV (both this AND
the FDR snp count cutoff must be true to call a SNP).
(default: 0.05)

-fdr FDR, --fdr FDR SNP false discovery rate- based on simulation data
with a 0.1 percent error rate (Q30) (default: 1e-06)

OTHER OPTIONS:
-s SCAFFOLDS, --scaffolds SCAFFOLDS

Location to a list of scaffolds to compare. You can
also make this a .fasta file and it will load the

(continues on next page)

20 Chapter 1. Contents

inStrain, Release 1.0.0

(continued from previous page)

scaffold names (default: None)
--store_coverage_overlap

Also store coverage overlap on an mm level (default:
False)

--store_mismatch_locations
Store the locations of SNPs (default: False)

--compare_consensus_bases
Only compare consensus bases; dont look for lower
frequency SNPs when calculating ANI (default: False)

--include_self_comparisons
Also compare IS profiles against themself (default:
False)

GREEDY CLUSTERING OPTIONS [THIS SECTION IS EXPERIMENTAL!]:
--greedy_clustering Dont do pair-wise comparisons, do greedy clustering to

only find the number of clsuters. If this is set, use
the parameters below as well (default: False)

--g_ani G_ANI ANI threshold for greedy clustering- put the fraction
not the percentage (e.g. 0.99, not 99) (default: 0.99)

--g_cov G_COV Alignment coverage for greedy clustering- put the
fraction not the percentage (e.g. 0.5, not 10)
(default: 0.99)

--g_mm G_MM Maximum read mismatch level (default: 100)

profile_genes

After running inStrain profile on a sample, you can calculate the coverage, microdiveristy, and SNP type for each gene.
You do this by providing a file of gene calls. See doc:example_output for example results, and doc:preparing_input
for information about creating the input file.

To see the command-line options, check the help:

$ inStrain profile_genes -h
usage: inStrain profile_genes -i IS -g GENE_FILE [-p PROCESSES] [-d] [-h]

REQUIRED:
-i IS, --IS IS an inStrain profile object (default: None)
-g GENE_FILE, --gene_file GENE_FILE

Path to prodigal .fna genes file. (default: None)

SYSTEM PARAMETERS:
-p PROCESSES, --processes PROCESSES

Number of processes to use (default: 6)
-d, --debug Make extra debugging output (default: False)
-h, --help show this help message and exit

genome_wide

After running inStrain profile, most results are presented on a scaffold-by-scaffold basis. To have the results summa-
rized in a genome-by-genome way instead, you can use the module inStrain genome_wide. It is also required to run
this module before making plots.

There are a number of ways of telling inStrain which scaffold belongs to which genome

1.4. Program documentation 21

inStrain, Release 1.0.0

1. Individual .fasta files. As recommended in preparing_input, if you want to run inStrain on multiple genomes
in the same sample, you should first concatenate all of the individual genomes into a single .fasta file and map
to that. To view the results of the individual genomes used to create the concatenated .fasta file, you can pass
a list of the individual .fasta files to *inStrain genome_wide. (e.g. inStrain genome_wide -i inStrain_folder -s
genome1.fasta genome2.fasta genome3.fasta)

2. Scaffold to bin file. This text file consists of two columns, with one column listing the scaffold name, and the
second column listing the genome bin name. Columns should be separated by tabs.

3. Nothing. If all of your scaffolds belong to the same genome, by running inStrain genome_wide without any -s
options it will summarize the results of all scaffolds together.

The flag –mm_level produces output for each mm. You probably don’t want this. For information on what I mean by
mm_level see Advanced use, for information on the output see Example output and explanations

To see the command-line options, check the help:

$ inStrain genome_wide -h
usage: inStrain genome_wide -i IS [-s [STB [STB ...]]] [--mm_level]

[-p PROCESSES] [-d] [-h]

REQUIRED:
-i IS, --IS IS an inStrain profile object (default: None)
-s [STB [STB ...]], --stb [STB [STB ...]]

Scaffold to bin. This can be a file with each line
listing a scaffold and a bin name, tab-seperated. This
can also be a space-seperated list of .fasta files,
with one genome per .fasta file. If nothing is
provided, all scaffolds will be treated as belonging
to the same genome (default: [])

--mm_level Create files on the mm level (see documentation for
info) (default: False)

SYSTEM PARAMETERS:
-p PROCESSES, --processes PROCESSES

Number of processes to use (default: 6)
-d, --debug Make extra debugging output (default: False)
-h, --help show this help message and exit

quick_profile

This is a quirky module that is not really related to any of the others. It is used to quickly profile a .bam file to pull out
scaffolds from genomes that are at a sufficient breadth.

To use it you must provide a .bam file, the .fasta file that you mapped to to generate the .bam file, and a scaffold to bin
file (see above section for details). The stringent_breadth_cutoff removed scaffolds entirely which have less breath
than this (used to make the program run faster and produce smaller output). All scaffolds from genomes with at least
the breadth_cutoff are then written to a file. In this way, you can then choose to run inStrain profile only on scaffolds
from genomes that known to be of sufficient breadth, speeding up the run and reducing RAM usage (though not by
much).

To see the command-line options, check the help:

$ inStrain quick_profile -h
usage: inStrain quick_profile -b BAM -f FASTA -s STB [-o OUTPUT]

[-p PROCESSES] [-d] [-h]
[--breadth_cutoff BREADTH_CUTOFF]

(continues on next page)

22 Chapter 1. Contents

inStrain, Release 1.0.0

(continued from previous page)

[--stringent_breadth_cutoff STRINGENT_BREADTH_CUTOFF]

REQUIRED:
-b BAM, --bam BAM A bam file to profile (default: None)
-f FASTA, --fasta FASTA

The .fasta file to profile (default: None)
-s STB, --stb STB Scaffold to bin file for genome-wide coverage and

breadth (default: None)
-o OUTPUT, --output OUTPUT

Output prefix (default: None)

SYSTEM PARAMETERS:
-p PROCESSES, --processes PROCESSES

Number of processes to use (default: 6)
-d, --debug Make extra debugging output (default: False)
-h, --help show this help message and exit

OTHER OPTIONS:
--breadth_cutoff BREADTH_CUTOFF

Minimum breadth to pull scaffolds (default: 0.5)
--stringent_breadth_cutoff STRINGENT_BREADTH_CUTOFF

Minimum breadth to let scaffold into coverm raw
results (default: 0.01)

plot

This module produces plots based on the results of inStrain profile and inStrain compare. In both cases, before plots
can be made, inStrain genome_wide must be run on the output folder first. In order to make plots 8 and 9, inStrain
profile_genes must be run first as well.

The recommended way of running this module is with the default -pl a. It will just try and make all of the plots that it
can, and will tell you about any plots that it fails to make.

See Example output and explanations for an example of the plots it can make.

To see the command-line options, check the help:

$ inStrain plot -h
usage: inStrain plot -i IS [-pl [PLOTS [PLOTS ...]]] [-p PROCESSES] [-d] [-h]

REQUIRED:
-i IS, --IS IS an inStrain profile object (default: None)
-pl [PLOTS [PLOTS ...]], --plots [PLOTS [PLOTS ...]]

Plots. Input 'all' or 'a' to plot all
1) Coverage and breadth vs. read mismatches
2) Genome-wide microdiversity metrics
3) Read-level ANI distribution
4) Major allele frequencies
5) Linkage decay
6) Read filtering plots
7) Scaffold inspection plot (large)
8) Linkage with SNP type (GENES REQUIRED)
9) Gene histograms (GENES REQUIRED)
10) Compare dendrograms (RUN ON COMPARE; NOT PROFILE)
(default: a)

(continues on next page)

1.4. Program documentation 23

inStrain, Release 1.0.0

(continued from previous page)

SYSTEM PARAMETERS:
-p PROCESSES, --processes PROCESSES

Number of processes to use (default: 6)
-d, --debug Make extra debugging output (default: False)
-h, --help show this help message and exit

other

This module holds odds and ends functionalities. As of version 1.0.0, all it can do is convert old IS_profile objects
(>v0.3.0) to newer versions (v0.8.0). As the code base around inStrain matures, we expect more functionalities to be
included here.

To see the command-line options, check the help:

$ inStrain other -h
usage: inStrain other [-p PROCESSES] [-d] [-h] [--old_IS OLD_IS]

SYSTEM PARAMETERS:
-p PROCESSES, --processes PROCESSES

Number of processes to use (default: 6)
-d, --debug Make extra debugging output (default: False)
-h, --help show this help message and exit

OTHER OPTIONS:
--old_IS OLD_IS Convert an old inStrain version object to the newer

version. (default: None)

1.5 Example output and explanations

InStrain produces a variety of output in the IS folder depending on which operations are run. Generally, output that is
meant for human eyes to be easily interpretable is located in the output folder.

1.5.1 inStrain profile

A typical run of inStrain will yield the following files in the output folder:

scaffold_info.tsv

This gives basic information about the scaffolds in your sample at the highest allowed level of read identity.

Table 1: scaffold_info.tsv
scaf-
fold

lengthbreadthcov-
er-
age

cov-
er-
age_median

cov-
er-
age_std

bases_w_0_coveragemean_clonalityme-
dian_clonality

mean_microdiversityme-
dian_microdiversity

un-
masked-
Breadth

breadth_expectedSNPsRef-
er-
ece_SNPs

BiAl-
lelic_SNPs

Mul-
ti-
Al-
lelic_SNPs

con-
sen-
sus_SNPs

pop-
u-
la-
tion_SNPs

co-
nANI

popANI

S3_003_000X1_scaffold_210391049 0.96091515729265967.7788369876072479 3.624233942411529541 0.99841158276926881.0 0.00158841723073133130.0 0.78360343183984750.99896018561743121 0 1 0 0 0 1.0 1.0
S3_003_000X1_scaffold_210631048 0.37213740458015270.66984732824427480 0.978669048484894658 0.0 0.44648985093441260 0 0 0 0 0 0.0 0.0
S3_003_000X1_scaffold_210811047 0.20821394460362940.20821394460362940 0.4060306612513717829 0.0 0.16794182030274530 0 0 0 0 0 0.0 0.0
S3_003_000X1_scaffold_211881043 0.35474592521572390.46883988494726740 0.6908089219842111673 0.0 0.3389895424200260 0 0 0 0 0 0.0 0.0
S3_003_000X1_scaffold_212251042 0.78214971209213054.3416506717850295 3.4491608427332947227 1.0 1.0 0.0 0.0 0.53742802303262960.97837007579504280 0 0 0 0 0 1.0 1.0

24 Chapter 1. Contents

inStrain, Release 1.0.0

scaffold The name of the scaffold in the input .fasta file

length Full length of the scaffold in the input .fasta file

breadth The percentage of bases in the scaffold that are covered by at least a single read. A breadth of 1 means that
all bases in the scaffold have at least one read covering them

coverage The average depth of coverage on the scaffold. If half the bases in a scaffold have 5 reads on them, and the
other half have 10 reads, the coverage of the scaffold will be 7.5

coverage_median The median coverage value of all bases in the scaffold, included bases with 0 coverage

coverage_std The standard deviation of all coverage values

bases_w_0_coverage The number of bases with 0 coverage

mean_clonality The mean clonality value of all bases in the scaffold that have a clonality value calculated. So if only
1 base on the scaffold meats the minimum coverage to calculate clonality, the mean_clonality of the scaffold
will be the clonality of that base

median_clonality The median clonality value of all bases in the scaffold that have a clonality value calculated

mean_microdiversity The mean mean_microdiversity value of all bases in the scaffold that have a
mean_microdiversity value calculated (microdiveristy = 1 - clonality)

median_microdiversity The median microdiversity value of all bases in the scaffold that have a microdiversity value
calculated

unmaskedBreadth The percentage of bases in the scaffold that have at least the min_cov number of bases. This value
multiplied by the length of the scaffold gives the percentage of bases for which clonality is calculated and on
which SNPs can be called

SNPs The total number of SNPs called on this scaffold

breadth_expected This tells you the breadth that you should expect if reads are evenly distributed along the genome,
given the reported coverage value. Based on the function breadth = -1.000 * e^(0.883 * coverage) + 1.000. This
is useful to establish whether or not the scaffold is actually in the reads, or just a fraction of the scaffold. If your
coverage is 10x, the expected breadth will be ~1. If your actual breadth is significantly lower then the expected
breadth, this means that reads are mapping only to a specific region of your scaffold (transposon, etc.)

SNPs The total number of SNPs called on this scaffold

Referece_SNPs The number of SNPs called on this scaffold with allele_count = 1. This means that the only allele
detected in the reads is different from the reference base

BiAllelic_SNPs The number of SNPs called on this scaffold with allele_count = 2. This means that there are two
possible alleles at this position

MultiAllelic_SNPs The number of SNPs called on this scaffold with allele_count > 2. This means that there are more
than two possible alleles at this position

consensus_SNPs The number of SNPs called on this scaffold with allele_count > 0 and where consensus base is not
the reference base. This should be the same as Reference_SNPs under almost all circumstances

population_SNPs These are SNPs where the reference base isn’t detected at all, regardless of the allele count.

conANI The average nucleotide identity between the reads in the sample and the .fasta file based on consensus SNPs.
Calculated using the formula ANI = (unmaskedBreadth * length) - consensus_SNPs)/ (unmaskedBreadth *
length))

popANI The average nucleotide identity between the reads in the sample and the .fasta file based on consensus SNPs.
Calculated using the formula ANI = (unmaskedBreadth * length) - population_SNPs)/ (unmaskedBreadth *
length))

1.5. Example output and explanations 25

inStrain, Release 1.0.0

mapping_info.tsv

This provides an overview of the number of reads that map to each scaffold, and some basic metrics about their quality.

Table 2: mapping_info.tsv
scaffold un-

fil-
tered_reads

un-
fil-
tered_pairs

pass_filter_cutoffpass_max_insertpass_min_insertpass_min_mapqfil-
tered_pairs

mean_mistmachesmean_insert_distancemean_mapq_scoremean_pair_lengthme-
dian_insert

mean_PID

all_scaffolds38023701790817167451117840111790699179081716684962.7480758782164787293.071392554348123.46918082640493298.38404705785126246.0 0.9906729188638016
S3_002_000X1_scaffold_116212 6 6 6 6 6 6 1.0 281.166666666666725.16666666666667300.0 287.0 0.9966666666666668
S3_002_000X1_scaffold_100510 5 5 5 5 5 5 0.2 318.0 33.2 299.8 208.0 0.9993333333333332
S3_002_000X1_scaffold_11516 3 3 3 3 3 3 5.666666666666668280.333333333333319.666666666666668300.0 293.0 0.9811111111111112
S3_002_000X1_scaffold_100414 6 6 6 6 6 6 0.5 295.5 16.666666666666668300.0 248.0 0.9983333333333334

The following metrics are provided for all individual scaffolds, and for all scaffolds together (scaffold “all_scaffolds”).
For the max insert cutoff, the median_insert for all_scaffolds is used

header line The header line (starting with #; not shown in the above table) describes the parameters that were used to
filter the reads

scaffold The name of the scaffold in the input .fasta file

unfiltered_reads The raw number of reads that map to this scaffold

unfiltered_pairs The raw number of pairs of reads that map to this scaffold. Only paired reads are used by inStrain

pass_filter_cutoff The number of pairs of reads mapping to this scaffold that pass the ANI filter cutoff (specified in
the header as “filter_cutoff”)

pass_max_insert The number of pairs of reads mapping to this scaffold that pass the maximum insert size cutoff- that
is, their insert size is less than 3x the median insert size of all_scaffolds. Note that the insert size is measured
from the start of the first read to the end of the second read (2 perfectly overlapping 50bp reads will have an
insert size of 50bp)

pass_min_insert The number of pairs of reads mapping to this scaffold that pass the minimum insert size cutoff

pass_min_mapq The number of pairs of reads mapping to this scaffold that pass the minimum mapQ score cutoff

filtered_pairs The number of pairs of reads that pass all cutoffs

mean_mistmaches Among all pairs of reads mapping to this scaffold, the mean number of mismatches

mean_insert_distance Among all pairs of reads mapping to this scaffold, the mean insert distance. Note that the
insert size is measured from the start of the first read to the end of the second read (2 perfectly overlapping 50bp
reads will have an insert size of 50bp)

mean_mapq_score Among all pairs of reads mapping to this scaffold, the average mapQ score

mean_pair_length Among all pairs of reads mapping to this scaffold, the average length of both reads in the pair
summed together

median_insert Among all pairs of reads mapping to this scaffold, the median insert distance.

mean_PID Among all pairs of reads mapping to this scaffold, the average percentage ID of both reads in the pair to
the reference .fasta file

SNVs.tsv

This describes the SNPs that are detected in this mapping.

26 Chapter 1. Contents

inStrain, Release 1.0.0

Table 3: SNVs.tsv
scaffold po-

si-
tion

ref_baseA C T G con_basevar_baseal-
lele_count

cryp-
tic

posi-
tion_coverage

var_freq ref_freq

S3_003_000X1_scaffold_21039833 C 2 7 0 0 C A 2 False 9 0.22222222222222220.7777777777777778
S3_003_000X1_scaffold_2099 C 0 0 5 0 T A 1 False 5 0.0 1.0
S3_003_000X1_scaffold_20123 A 0 0 0 11 G A 1 False 11 0.0 1.0
S3_003_000X1_scaffold_20261 T 19 0 0 0 A A 1 False 19 1.0 1.0
S3_003_000X1_scaffold_20291 C 0 16 2 0 C T 2 False 18 0.11111111111111110.8888888888888888

See the module_descriptions for what constitutes a SNP (what makes it into this table)

scaffold The scaffold that the SNP is on

position The genomic position of the SNP

ref_base The reference base in the .fasta file at that position

A, C, T, and G The number of mapped reads encoding each of the bases

con_base The consensus base; the base that is supported by the most reads

var_base Variant base; the base with the second most reads

morphia The number of bases that are detected above background levels. In order to be detected above background
levels, you must pass an fdr filter. See module descriptions for a description of how that works. A morphia of 0
means no bases are supported by the reads, a morphia of 1 means that only 1 base is supported by the reads, a
morphia of 2 means two bases are supported by the reads, etc.

cryptic If a SNP is cryptic, it means that it is detected when using a lower read mismatch threshold, but becomes
undetected when you move to a higher read mismatch level. See “dealing with mm” in the advanced_use
section for more details on what this means.

position_coverage The total number of reads at this position

var_freq The fraction of reads supporting the var_base

ref_freq The fraction of reds supporting the ref_base

con_freq The fraction of reds supporting the con_base

linkage.tsv

This describes the linkage between pairs of SNPs in the mapping that are found on the same read pair at least min_snp
times.

Table 4: linkage.tsv
r2 d_primer2_normalizedd_prime_normalizedto-

tal
countABcountAbcountaBcountabal-

lele_A
al-
lele_a

al-
lele_B

al-
lele_b

dis-
tance

po-
si-
tion_A

po-
si-
tion_B

scaf-
fold

1.0 1.0 1.0 1.0 27 0 14 13 0 G A T C 45 191425191470S3_003_000X1_scaffold_20
0.107438016528925661.00000000000000020.052631578947368431.0 24 13 0 9 2 G A C A 80 191425191505S3_003_000X1_scaffold_20
0.083333333333333481.0 0.078947368421052641.0 26 11 2 13 0 T C C A 35 191470191505S3_003_000X1_scaffold_20
1.00000000000000091.0 1.0 1.0 30 22 0 0 8 C T T C 12 99342 99354 S3_003_000X1_scaffold_88
1.00000000000000041.0 1.0 1.0 22 17 0 0 5 C T T A 60 99342 99402 S3_003_000X1_scaffold_88

1.5. Example output and explanations 27

inStrain, Release 1.0.0

Linkage is used primarily to determine if organisms are undergoing horizontal gene transfer or not. It’s calculated for
pairs of SNPs that can be connected by at least min_snp reads. It’s based on the assumption that each SNP as two
alleles (for example, a A and b B). This all gets a bit confusing and has a large amount of literature around each of
these terms, but I’ll do my best to briefly explain what’s going on

scaffold The scaffold that both SNPs are on

position_A The position of the first SNP on this scaffold

position_B The position of the second SNP on this scaffold

distance The distance between the two SNPs

allele_A One of the two bases at position_A

allele_a The other of the two bases at position_A

allele_B One of the bases at position_B

allele_b The other of the two bases at position_B

countAB The number of read-pairs that have allele_A and allele_B

countAb The number of read-pairs that have allele_A and allele_b

countaB The number of read-pairs that have allele_a and allele_B

countab The number of read-pairs that have allele_a and allele_b

total The total number of read-pairs that have have information for both position_A and position_B

r2 This is the r-squared linkage metric. See below for how it’s calculated

d_prime This is the d-prime linkage metric. See below for how it’s calculated

r2_normalized, d_prime_normalized These are calculated by rarefying to min_snp number of read pairs. See
below for how it’s calculated

Python code for the calculation of these metrics:

freq_AB = float(countAB) / total
freq_Ab = float(countAb) / total
freq_aB = float(countaB) / total
freq_ab = float(countab) / total

freq_A = freq_AB + freq_Ab
freq_a = freq_ab + freq_aB
freq_B = freq_AB + freq_aB
freq_b = freq_ab + freq_Ab

linkD = freq_AB - freq_A * freq_B

if freq_a == 0 or freq_A == 0 or freq_B == 0 or freq_b == 0:
r2 = np.nan

else:
r2 = linkD*linkD / (freq_A * freq_a * freq_B * freq_b)

linkd = freq_ab - freq_a * freq_b

calc D-prime
d_prime = np.nan
if (linkd < 0):

denom = max([(-freq_A*freq_B),(-freq_a*freq_b)])
d_prime = linkd / denom

(continues on next page)

28 Chapter 1. Contents

inStrain, Release 1.0.0

(continued from previous page)

elif (linkD > 0):
denom = min([(freq_A*freq_b), (freq_a*freq_B)])
d_prime = linkd / denom

################
calc rarefied

rareify = np.random.choice(['AB','Ab','aB','ab'], replace=True, p=[freq_AB,freq_Ab,
→˓freq_aB,freq_ab], size=min_snp)
freq_AB = float(collections.Counter(rareify)['AB']) / min_snp
freq_Ab = float(collections.Counter(rareify)['Ab']) / min_snp
freq_aB = float(collections.Counter(rareify)['aB']) / min_snp
freq_ab = float(collections.Counter(rareify)['ab']) / min_snp

freq_A = freq_AB + freq_Ab
freq_a = freq_ab + freq_aB
freq_B = freq_AB + freq_aB
freq_b = freq_ab + freq_Ab

linkd_norm = freq_ab - freq_a * freq_b

if freq_a == 0 or freq_A == 0 or freq_B == 0 or freq_b == 0:
r2_normalized = np.nan

else:
r2_normalized = linkd_norm*linkd_norm / (freq_A * freq_a * freq_B * freq_b)

calc D-prime
d_prime_normalized = np.nan
if (linkd_norm < 0):

denom = max([(-freq_A*freq_B),(-freq_a*freq_b)])
d_prime_normalized = linkd_norm / denom

elif (linkd_norm > 0):
denom = min([(freq_A*freq_b), (freq_a*freq_B)])
d_prime_normalized = linkd_norm / denom

rt_dict = {}
for att in ['r2', 'd_prime', 'r2_normalized', 'd_prime_normalized', 'total', 'countAB
→˓', \

'countAb', 'countaB', 'countab', 'allele_A', 'allele_a', \
'allele_B', 'allele_b']:

rt_dict[att] = eval(att)

1.5.2 inStrain compare

A typical run of inStrain will yield the following files in the output folder:

1.5. Example output and explanations 29

inStrain, Release 1.0.0

Table 5: comparisonsTable.tsv
scaffold name1 name2 cov-

er-
age_overlap

com-
pared_bases_count

per-
cent_genome_compared

length con-
sen-
sus_SNPs

pop-
ula-
tion_SNPs

co-
nANI

popANI

S3_016_000X1_scaffold_14208Sloan3AllGenomeInventory.fasta-
vs-
S3_003_000X1.sorted.bam

Sloan3AllGenomeInventory.fasta-
vs-
S3_016_000X1.sorted.bam

0.98253043938591841856 0.98149127445795881891 7 0 0.9962284482758621.0

S3_016_000X1_scaffold_9493Sloan3AllGenomeInventory.fasta-
vs-
S3_003_000X1.sorted.bam

Sloan3AllGenomeInventory.fasta-
vs-
S3_016_000X1.sorted.bam

0.97785414280259642561 0.9771079740557042621 2 0 0.99921905505661851.0

S3_016_000X1_scaffold_12686Sloan3AllGenomeInventory.fasta-
vs-
S3_003_000X1.sorted.bam

Sloan3AllGenomeInventory.fasta-
vs-
S3_016_000X1.sorted.bam

0.97873368777187042025 0.97684515195369042073 7 0 0.99654320987654321.0

S3_016_000X1_scaffold_11829Sloan3AllGenomeInventory.fasta-
vs-
S3_003_000X1.sorted.bam

Sloan3AllGenomeInventory.fasta-
vs-
S3_016_000X1.sorted.bam

0.97391304347826082128 0.97124600638977642191 14 0 0.99342105263157921.0

S3_016_000X1_scaffold_8891Sloan3AllGenomeInventory.fasta-
vs-
S3_003_000X1.sorted.bam

Sloan3AllGenomeInventory.fasta-
vs-
S3_016_000X1.sorted.bam

0.98262128892107162714 0.98262128892107162762 5 0 0.99815770081061161.0

scaffold The scaffold being compared

name1 The name of the first inStrain profile being compared

name2 The name of the second inStrain profile being compared

coverage_overlap The percentage of bases that are either covered or not covered in both of the profiles (covered = the
base is present at at least min_snp coverage). The formula is length(coveredInBoth) / length(coveredInEither).
If both scaffolds have 0 coverage, this will be 0.

compared_bases_count The number of considered bases; that is, the number of bases with at least min_snp coverage
in both profiles. Formula is length([x for x in overlap if x == True]).

percent_genome_compared The percentage of bases in the scaffolds that are covered by both. The formula is
length([x for x in overlap if x == True])/length(overlap). When ANI is np.nan, this must be 0. If both scaf-
folds have 0 coverage, this will be 0.

length The total length of the scaffold

consensus_SNPs The number of locations along the genome where both samples have the base at >= 5x coverage,
and the consensus allele in each sample is different

population_SNPs The number of locations along the genome where both samples have the base at >= 5x coverage,
and no alleles are shared between either sample. See inStrain manuscript for more details.

popANI The average nucleotide identity among compared bases between the two scaffolds, based on popula-
tion_SNPs. Calculated using the formula popANI = (compared_bases_count - population_SNPs) / com-
pared_bases_count

conANI The average nucleotide identity among compared bases between the two scaffolds, based on consen-
sus_SNPs. Calculated using the formula conANI = (compared_bases_count - consensus_SNPs) / com-
pared_bases_count

1.5.3 inStrain profile_genes

A typical run of inStrain profile_genes will yield the following additional files in the output folder:

30 Chapter 1. Contents

inStrain, Release 1.0.0

gene_info.tsv

This describes some basic information about the genes being profiled

Table 6: gene_info.tsv
gene scaffold di-

rec-
tion

par-
tial

start end cov-
er-
age

breadthclon-
al-
ity

mi-
crodi-
ver-
sity

masked_breadthSNPs_per_bpmin_ANI

S3_002_028G1_scaffold_0_1S3_002_028G1_scaffold_0-1 False 957 2219 0
S3_002_028G1_scaffold_0_2S3_002_028G1_scaffold_0-1 False 2189 3136 0
S3_002_028G1_scaffold_0_3S3_002_028G1_scaffold_01 False 3274 5013 0
S3_002_028G1_scaffold_0_4S3_002_028G1_scaffold_0-1 False 5018 5746 0
S3_002_028G1_scaffold_0_5S3_002_028G1_scaffold_01 False 5888 6862 0

gene Name of the gene being profiled

scaffold Scaffold that the gene is on

direction Direction of the gene (based on prodigal call). If -1, means the gene is not coded in the direction expressed
by the .fasta file

partial If True this is a partial gene; based on not having partial=00 in the record description provided by Prodigal

start Start of the gene (position on scaffold; 0-indexed)

end End of the gene (position on scaffold; 0-indexed)

coverage The mean coverage across the length of the gene

breadth The number of bases in the gene that have at least 1x coverage

microdiversity The mean nucleotide diversity (pi) among positions on the gene with at least 5x coverage

clonality 1 - microdiversity

masked_breadth The percentage of positions in the gene with at least 5x coverage

SNPs_per_bp The number of positions on the gene where a SNP is called

min_ANI The minimum read ANI level when profile_genes was run (0 means the value is whatever was set with
Profile was originally run)

SNP_mutation_types.tsv

This describes whether SNPs are synonymous, nonsynonymous, or intergenic

Table 7: SNP_mutation_types.tsv
scaffold po-

si-
tion

ref_baseA C T G con_basevar_baseal-
lele_count

po-
si-
tion_coverage

var_freq ref_freq mu-
ta-
tion_type

mu-
ta-
tion

gene

S3_002_056W1_scaffold_1212134 C 0 3 2 0 C T 2 5 0.4 0.6 N N:H936YS3_002_056W1_scaffold_121_2
S3_002_056W1_scaffold_1218509 G 7 0 0 0 A A 1 7 1.0 1.0 N N:G459RS3_002_056W1_scaffold_121_11
S3_002_056W1_scaffold_1218510 G 7 0 0 0 A A 1 7 1.0 1.0 N N:G460ES3_002_056W1_scaffold_121_11
S3_002_056W1_scaffold_12116899 G 0 2 0 5 G C 2 7 0.28571428571428570.7142857142857143N N:G1068RS3_002_056W1_scaffold_121_20
S3_002_056W1_scaffold_12124347 C 0 9 2 0 C T 2 11 0.181818181818181850.8181818181818182N N:Q894*S3_002_056W1_scaffold_121_25

1.5. Example output and explanations 31

inStrain, Release 1.0.0

All genes with an allele_count of 1 or 2 make it into this table; see the above description of SNVs.tsv for details on
what most of these columns mean

mutation_type What type of mutation this is. N = nonsynonymous, S = synonymous, I = intergenic, M = there are
multiple genes with this base so you cant tell

mutation Short-hand code for the amino acid switch. If synonymous, this will be S: + the position. If nonsynony-
mous, this will be N: + the old amino acid + the position + the new amino acid.

gene The gene this SNP is in

1.5.4 inStrain genome_wide

A typical run of inStrain genome_wide will yield the following additional files in the output folder:

genomeWide_scaffold_info.tsv

This is a genome-wide version of the scaffold report described above. See above for column descriptions.

Table 8: genomeWide_scaffold_info.tsv
genomede-

tected_scaffolds
true_scaffoldslengthSNPs Ref-

er-
ece_SNPs

BiAl-
lelic_SNPs

Mul-
ti-
Al-
lelic_SNPs

con-
sen-
sus_SNPs

pop-
u-
la-
tion_SNPs

breadthcov-
er-
age

cov-
er-
age_std

mean_clonalityco-
nANI

popANIun-
masked-
Breadth

breadth_expected

S3_002_S3_002_000X1_S3_002_000X1_scaffold_633.fasta.fa1 1 1972824 5 19 0 7 5 0.94621857258718584.54308596918086052.71064497011399030.9980952484223260.99927924217462940.9994851729818780.49229521492295220.9818945976123048
S3_002_S3_002_000X1_S3_002_000X1_scaffold_980.fasta.fa1 1 114400 0 0 0 0 0 0.101136363636363640.101136363636363640.30150920315435950.0 0.0 0.0 0.08543195678460236
S3_002_S3_002_028Y1_S3_002_028Y1_scaffold_1.fasta.fa1 1 214550 0 0 0 0 0 0.52500582614775120.9253786996038221.12399583705558310.99853881281804821.0 1.0 0.0102074108599394080.5582933883068741
S3_002_S3_002_028Y1_S3_002_028Y1_scaffold_22.fasta.fa1 1 1530662 2 60 0 10 2 0.95622631647719844.9775251535345614.16174884472199750.99390427405861840.99836681365343780.99967336273068760.40003920031360250.9876630284821302
S3_002_S3_002_028Y1_S3_002_028Y1_scaffold_24.fasta.fa1 1 1038364 6 58 0 18 6 0.96503900606761044.3105075604353272.7834786521592970.99125171602748960.99578651685393260.99859550561797760.41144177983241840.9777670126398924

genomeWide_mapping_info.tsv

This is a genome-wide version of the read report described above. See above for column descriptions.

Table 9: genomeWide_mapping_info.tsv
genome scaf-

folds
un-
fil-
tered_reads

un-
fil-
tered_pairs

pass_filter_cutoffpass_max_insertpass_min_insertpass_min_mapqfil-
tered_pairs

mean_mistmachesmean_insert_distancemean_mapq_scoremean_pair_lengthme-
dian_insert

mean_PID

S2_002_005G1_phage_Clostridioides_difficile.fasta1 10605 5062 5048 5062 5062 5062 5048 0.3832477281706835312.36388779138681.3024496246542872293.6845120505729308.0 0.998581261373412
S2_018_020G1_bacteria_Clostridioides_difficile.fasta34 44535472163329214920521630402162730216332921483940.5636466689761853321.351067202147141.47419579138972293.33494491093336312.51470588235290.9979527547934701

1.5.5 inStrain plot

This is what the results of inStrain plot look like.

1) Coverage and breadth vs. read mismatches

Breadth of coverage (blue line), coverage depth (red line), and expected breadth of coverage given the depth of cover-
age (dotted blue line) versus the minimum ANI of mapped reads. Coverage depth continues to increase while breadth
of plateaus, suggesting that all regions of the reference genome are not present in the reads being mapped.

32 Chapter 1. Contents

inStrain, Release 1.0.0

1.5. Example output and explanations 33

inStrain, Release 1.0.0

2) Genome-wide microdiversity metrics

SNV density, coverage, and nucleotide diversity. Spikes in nucleotide diversity and SNV density do not correspond
with increased coverage, indicating that the signals are not due to read mis-mapping. Positions with nucleotide diver-
sity and no SNV-density are those where diversity exists but is not high enough to call a SNV

3) Read-level ANI distribution

Distribution of read pair ANI levels when mapped to a reference genome; this plot suggests that the reference genome
is >1% different than the mapped reads

4) Major allele frequencies

Distribution of the major allele frequencies of bi-allelic SNVs (the Site Frequency Spectrum). Alleles with major
frequencies below 50% are the result of multiallelic sites. The lack of distinct puncta suggest that more than a few
distinct strains are present.

34 Chapter 1. Contents

inStrain, Release 1.0.0

1.5. Example output and explanations 35

inStrain, Release 1.0.0

36 Chapter 1. Contents

inStrain, Release 1.0.0

1.5. Example output and explanations 37

inStrain, Release 1.0.0

38 Chapter 1. Contents

inStrain, Release 1.0.0

1.5. Example output and explanations 39

inStrain, Release 1.0.0

5) Linkage decay

Metrics of SNV linkage vs. distance between SNVs; linkage decay (shown in one plot and not the other) is a common
signal of recombination.

6) Read filtering plots

Bar plots showing how many reads got filtered out during filtering. All percentages are based on the number of paired
reads; for an idea of how many reads were filtered out for being non-paired, compare the top bar and the second to top
bar.

7) Scaffold inspection plot (large)

This is an elongated version of the genome-wide microdiversity metrics that is long enough for you to read scaffold
names on the y-axis

40 Chapter 1. Contents

inStrain, Release 1.0.0

1.5. Example output and explanations 41

inStrain, Release 1.0.0

42 Chapter 1. Contents

inStrain, Release 1.0.0

8) Linkage with SNP type (GENES REQUIRED)

Linkage plot for pairs of non-synonymous SNPs and all pairs of SNPs

9) Gene histograms (GENES REQUIRED)

Histogram of values for all genes profiled

10) Compare dendrograms (RUN ON COMPARE; NOT PROFILE)

A dendrogram comparing all samples based on popANI and based on shared_bases.

1.6 Advanced use

1.6.1 Adjusting parameters

There are a number of important considerations when running inStrain. Here is some theory and data about how to
make inStrain work best

1.6. Advanced use 43

inStrain, Release 1.0.0

44 Chapter 1. Contents

inStrain, Release 1.0.0

Reference genome selection

inStrain relies on mapping reads from a sample to a reference genome. How similar the reference genome is to the
reads, and the minimum read ANI threshold that you set, are very important and will determine much of what you get
out of inStrain.

Below are a series of plots made by introducing a known number of mutations into an E. coli genome, simulating
reads from these mutated genomes (at 20x coverage) with known ANI differences from the original reference genome,
mapping the synthetic reads back to the original reference genome, and running inStrain.

In the above plot, inStrain was run with a minimum read ANI of 0.99 (inStrain profile parameter -l or –min_read_ani).
The reported genome breadth is reported on the y-axis. At 20x coverage, you should see 100% genome breadth
(meaning that every base of the reference genome is covered by at least one read). However, when the reference
genome is sufficiently different from the reads, the breadth is much lower. This is because when the read pair differs
from the reference base by more than 99% ANI, it gets filtered out, and no longer maps to the genome. This can be
exemplified a bit better by showing a variety of read filtering thresholds simultaneously:

1.6. Advanced use 45

inStrain, Release 1.0.0

The line drawn in the first figure is now in red on this second figure. As you can see, the more you relax the minimum
read ANI, the more you can align reads to more distantly related reference genomes.

Warning: You don’t want your minimum read pair ANI to be too relaxed, because then you risk mapping reads
that don’t actually belong to the population represented by your reference genome (“non-specific” mapping). You
can also avoid non-specific mapping by increasing the size of your reference genome dataset (more on that below)

An important takeaway from the above figure is that the minimum read ANI should be at least 3% lower than the
expected differences between your reads and the reference genome. If you look at the genome that’s 96% ANI from
the reads, for example, you see that none of the minimum read ANI levels get the correct breadth of 1. If you look
at the genome that’s 98% ANI from the reads, you can see that having a minimum read ANI of 96% is the only one
that’s actually near 100% breadth. This can also be visualized by looking at the distribution of ANI values of read
pairs mapping to the 98% genome:

Most read pairs have 98%, as expected, but there is a wide distribution of read ANI values. This is because SNPs are
not evenly spread along the genome, a fact that is even more true when you consider that real genomes likely have
even more heterogeneity in where SNPs occur than this synthetic example.

The fact that the reads fail to map to heterogenous areas of the genome is also more problematic than it originally
seems. It means that the area of the genome that are most similar to the sample reads will recruit reads during read
mapping, but the (potentially interesting) areas with more SNPs will not. This is exemplified in the figure below:

The y-axis in this figure shows the inStrain calculated ANI; that is, the number of identified SNPs divided by the
number of bases with at least 5x coverage. If you look at red line, where only reads with at least 99% ANI are mapped,
the ANI of reads mapping to the genome is almost always overestimated. This is because reads are only mapping to a
small fraction of the genome (see the breadth in the second figure), and the small fraction of the genome that the reads
are mapping to are the regions with a small number of SNPs.

By staring at this figure like I have, you’ll notice that the correct ANI is identified when the minimum read pair ANI is
2-3% lower than the actual difference between the reads and the genome. 96% minimum ANI reads correctly identify
the ANI of the 98% genome, for example.

Finally, in case you’re wondering what the maximum read ANI is that bowtie2 is able to map, the answer is that it’s
complicated:

When mapping to a genome that is 90% ANI to the reads, you no longer see a peak at 90% as you do in the 98%
example. This is because bowtie2 doesn’t have a string ANI cutoff, it just maps what it can. This likely depends on

46 Chapter 1. Contents

inStrain, Release 1.0.0

1.6. Advanced use 47

inStrain, Release 1.0.0

where the SNPs are along the read, whether they’re in the seed sequence that bowtie2 uses, etc. While bowtie2 can
map reads that are up to 86% ANI with the reference genome, I wouldn’t push it past 92% based on this graph.

Note: In conclusion, you want your reference genome to be as similar to your reads as possible, and to set your
minimum read-pair ANI to at least ~3% lower than the expected different from the reads and the reference genome.
The inStrain default is 95% minimum read pair ANI, which is probably ideal in the case that you’ve assembled your
reference genome from the sample itself. If you plan on using inStrain to map reads to a genome that you downloaded
from a reference database, you may want to lower the minimum read-pair ANI to as low as ~92%, and ensure that the
genome your mapping to is at least the same species as the organism in your reads (as genomes of the same species
share ~95% ANI)

Mapping to multiple reference genomes

Mapping to multiple genomes simultaneously to avoid mis-mapping

There are a number of ways to avoid mis-mapped reads (reads from a different population mapping to your reference
genome). One method is to filter out distantly related reads, including by using the minimum read-pair ANI threshold
(-l, –min_read_ani) or by using the mapQ score cutoff (more on that later). Another method is to include multiple
reference genomes in the .fasta file that you map to, which gives the mapping software a chance to better place your
reads.

When bowtie2 maps reads, by default, it only maps reads to a single location. That means that if a read maps at 98%
ANI to one scaffold, and 99% ANI to another scaffold, it will place the read at the position with 99% ANI. If the read
only maps to one scaffold at 98% ANI, however, bowtie2 will place the read there. Thus, by including more reference
genome sequences when performing the mapping, reads will end up mapping more accurately overall.

Based on the above information, if you’d like to run inStrain on multiple reference genomes for the same set
of reads, you should concatenate the genomes first and map to the concatenated genome set. You can then use
inStrain genome_wide to get information on each genome individually.

Note: You can get an idea of the extent of mis-mapping going on in your sample by looking at the variation in
coverage across the genome. If you see a region of the genome with much higher coverage than the rest, it is likely
that that region is recruiting reads from another population. Looking at these wavy coverage patterns can be confusing,
however. Here is a link for more information on this phenomenon.

Warning: It is possible to include too many genomes in your reference .fasta file, however. You generally don’t
want to have genomes that are over 98% ANI to each other in your reference genome set, because then the genomes
can steal reads from each other. More on that below.

Read stealing due to including closely related genomes in the reference .fasta file

If bowtie2 finds a read that maps equally well to multiple different positions in your .fasta file, it will randomly choose
one of the two positions to place the read at. Because of this, you really don’t want to have multiple positions in your
.fasta file that are identical. At these positions it is impossible for the alignment algorithm to known which reference
sequence the read should actually map to. You can then end up with “read stealing”, where closely related genomes
will steal reads from the true reference genome.

In the below example, thousands of bacterial genomes were dereplicated at 99.8% ANI and combined into a single
.fasta file. One genome was randomly chosen to profile, and reads from the sample from which that genome was

48 Chapter 1. Contents

http://merenlab.org/2016/12/14/coverage-variation/

inStrain, Release 1.0.0

assembled were mapped to this concatenation of all genomes together and to that one genome individually. We then
profiled the difference in read mapping when mapping to the two different .fasta files. Specifically, we looked at
reads that mapped to the genome of interest when mapping to that genome individually, and mapped elsewhere when
mapping to all genomes concatenated together.

Each dot represents a genome in the concatenated genome set. The position on the x-axis indicates that genomes ANI
to the genome of interest (orange dot), and the position on the y-axis indicates the number of reads that were stolen
from the genome of interest. The number of reads that were stolen from the genome of interest is the number of reads
that mapped to the genome of interest when it was mapped to as an individual .fasta file, but that now map to a different
genome when reads were mapped to a concatenation of many genomes together.

As you can see, the more closely related an alternate genome is to a genome of interest, the more likely it is steal
reads. This makes sense, because assuming that the genomes represented by blue dots are not actually present in the
sample (likely true in this case), the only way these genomes have reads mapped to them is be having regions that
are identical to the genome that is actually present in the sample. In fact, you can even calculate the probability of
having an identical region as long as a pair of reads (190bp in this case) based on the genome ANI using the formula:
Probability of identical 190bp fragment = (genome ANI) ^ 190. We can then overlay this onto the above plot:

This simple formula fits the observed trend remarkably well, providing pretty good evidence that simple genome-ANI-
based read stealing is what is going on.

Note: In the above example, read stealing approaches 0 at around 98% ANI. Thus, when dereplicating your genome

1.6. Advanced use 49

inStrain, Release 1.0.0

set (using dRep for example), using a threshold of 98% or lower is a good idea.

As a final check, we can also filter reads by MapQ score. A MapQ is assigned to each read mapped by bowtie2, and
is meant to signify how well the read mapped. MapQ scores are incredibly confusing (see the following link for more
information), but MapQ scores of 0 and 1 have a special meaning. If a read maps equally well to multiple different
locations on a .fasta file, it always gets a MapQ score of 0 or 1. Thus, by filtering out reads with MapQ scores < 2, we
can see reads that map uniquely to one genome only.

Just as we suspected, read no longer map to these alternate genomes at all. This provides near conclusive evidence that
the organisms with these genomes are not truly in the sample, but are merely stealing reads from the genome of the
organisms that is there by having regions of identical DNA. For this reason it can be smart to set a minimum MapQ
score of 2 to avoid mis-mapping, but at the same time, look at the difference in the number of reads mapping to the
correct genome when the MapQ filter is used- 85% of the reads are filtered out. Using MapQ filters is a matter of
debate depending on your specific use-case.

Other considerations

A final aspect to consider is de novo genome assembly. When multiple closely related genomes are present in a sample,
the assembly algorithm can break and you can fail to recover genomes from either organism. A solution to this problem
is to assemble and bin genomes from each metagenomic sample individually, and dereplicate the genome set at the
end. For more information on this, see the publication “dRep: a tool for fast and accurate genomic comparisons that
enables improved genome recovery from metagenomes through de-replication”

Assuming you de-replicate your genomes at 98% before mapping to run inStrain, another matter to consider is how
you define detection of a genome in a sample. The following figure shows the expected genome overlap between
genomes of various ANI values from different environments (adapted from “Consistent metagenome-derived metrics
verify and define bacterial species boundaries”)

As you can see, genomes from that share >95% ANI tend to share ~75% of their genome content. Thus, using a
breadth detection cutoff of somewhere around 50-75% seems to be reasonable.

Note: Based on the above information we recommend the following pipeline. 1) Assemble and bin genomes from all
samples individually. 2) Dereplicate genomes based on 97-98% ANI. 3) Concatenate all dereplicated genomes into a
single .fasta file, and map reads from all original samples to this concatenated .fasta file. 4) Use inStrain to profile the
strain-level diversity of each microbial population (represented by a genome in your concatenated .fasta file)

50 Chapter 1. Contents

https://github.com/MrOlm/drep
http://biofinysics.blogspot.com/2014/05/how-does-bowtie2-assign-mapq-scores.html
https://www.nature.com/articles/ismej2017126
https://www.nature.com/articles/ismej2017126
https://www.biorxiv.org/content/early/2019/05/24/647511.full.pdf
https://www.biorxiv.org/content/early/2019/05/24/647511.full.pdf

inStrain, Release 1.0.0

Detecting closely related organisms with inStrain compare

To compare strains with inStrain, one must first generate two inStrain profiles (using the command inStrain profile)
based on mapping reads to the same .fasta file. inStrain compare then compares the reads mapped from both samples
to the same .fasta file to calculate an extremely precise and accurate ANI value for the populations in the two samples.
In order for this to work well, however, there are a number of things that you must keep in mind.

Same as inStrain profile, inStrain compare requires the user to think about the minimum read-pair ANI that should
be considered. It will use the read-pair ANI selected during the inStrain profile commands by default, but the user
can also access many other min read-pair ANI values using the ANI (see section Dealing with “mm” below for more
information)

Below are a series of plots generated from synthetic data. In these plots, a reference genome was downloaded from
NCBI and mutated to a series of known ANI values. Synthetic reads were generated from each of these mutated
genomes, mapped back to the original genome, and then inStrain profile was run on the resulting .bam file. Synthetic
reads were also generated from the original genome and mapped back to it as well. Finally, inStrain compare was run
to compare the .bams resulting the mutated genomes to the original genome. This allows us to compare the (pop)ANI
value reported by inStrain compare to the true ANI value (generated by introducing a known number of mutations).

Note: The ANI values reported from inStrain compare are referred to as popANI values

As you can see, the calculated popANI value is incorrect when the actual ANI different is large. This makes sense
based on the section above. When mapping reads from an organism that is 90% ANI to the .fasta file that you’re
mapping to, many read-pairs will have an ANI of over 90%, and thus be thrown out when using a 95% read-pair
ANI cutoff. This can also be exemplified by looking at the fraction of the genome that is compared when comparing
genomes of increasing ANI.

As expected, when comparing genomes of low ANI values with a read-pair ANI threshold of 95%, only a small
amount of the genome is actually being compared. This genome fraction represents the spaces of the genome that
happen to be the most similar, and thus the inStrain calculated ANI value is overestimated. It’s also worth noting that
when comparing genomes 95% ANI away from each other, only 50% of the genome bases can be compared when you
filter read-pairs at a minimum of 95% ANI. You can also visualize how a lack of genome breadth of coverage leads to
errors in the ANI calculation in another way:

Now that we understand all of this, lets visualize lots of minimum read-pair ANI cutoffs simultaneously

1.6. Advanced use 51

inStrain, Release 1.0.0

52 Chapter 1. Contents

inStrain, Release 1.0.0

1.6. Advanced use 53

inStrain, Release 1.0.0

There are a couple of things to point out here.

1) Having a lower minimum read-pair ANI cutoff lets you accurately detect more distant ANI values. This makes
sense given the logic above.

2) There is a ceiling to how much the ANI is overestimated. If your minimum read-pair ANI is 96%, you think
even very distantly related things have an ANI of ~96.5% ANI. If the minimum ANI threshold is 98%, you think
distantly related things are ~98.5% ANI.

3) To get an accurate ANI value, you need to set your minimum read-pair ANI cutoff significantly below the ANI
value that you wish to detect.

All of this begs the question, why would you ever set your minimum ANI threshold above 90% or so? If you’re
comparing clonal genomes, that would be a good idea. However, in most real scenarios, you want to set your minimum
ANI threshold as high as possible to avoid mis-mapped reads, which will artificially increase your reported popANI.

Finally, this brings is to perhaps the most confusing yet import figure of this whole section. If I want to identify nearly
identical genomes in two samples, what should I set my minimum ANI threshold to?

The above figure shows a range of minimum read-pair ANI thresholds on the x-axis, and a range of True ANI differ-
ences between genomes on the y-axis. Dots are colored green if the reported popANI is within 0.01% ANI of the True
ANI, and colored yellow if they are not. As you can see, when you want to identify genomes that are extremely closely
related (>99.9%), pretty much all minimum read-pair ANI thresholds values work. This is because if the genomes are
that similar, there are going to be few reads that are thrown out due to have too many SNPs. This figure looks a bit
more odd when you consider an “accurate” comparison to be one with 0.001% of the actual ANI

However, you also need to keep in mind that you want to have high breadth of coverage for each of the reads mapped
to the reference genome. If the reference genome is not perfect, you need to relax your ANI threshold even more

Note: In conclusion: If you have a reference genome that closely represents the true organism, and you want to
identify extremely similar genomes (>99.999% ANI), a minimum read-pair ANI threshold of 98% is probably good.

54 Chapter 1. Contents

inStrain, Release 1.0.0

If you are working with a de-replicated set of genomes that you’re mapping to, however (as recommended above), a
minimum read-pair ANI threshold of 95% is probably better.

1.6.2 Accessing raw data

inStrain stores much more data than is shown in the output folder. It is kept in the raw_data folder, and is mostly
stored in compressed formats (see the section “Descriptions of raw data” for what kinds of data are available). This
data can be easily accessed using python, as described below.

To access the data, you first make an SNVprofile object of the inStrain output profile, and then you access data from
that object. For example, the following code accessed the raw SNP table

import inStrain
import inStain.SNVprofile

IS = inStain.SNVprofile.SNVprofile(``/home/mattolm/inStrainOutputTest/``)
raw_snps = IS.get('raw_snp_table')

You can use the example above (IS.get()) to access any of the raw data described in the following section. There
are also another special things that are accessed in other ways, as described in the section “Accessing other data”

Basics of raw_data

A typical run of inStrain will yield a folder titled “raw_data”, with lots of individual files in it. The specifics of what
files are in there depend on how inStrain was run, and whether or not additional commands were run as well (like
profile_genes).

1.6. Advanced use 55

inStrain, Release 1.0.0

There will always be a file titled “attributes.tsv”. This describes some basic information about each item in the raw
data. Here’s an example:

name value type description
location /Users/mattolm/Programs/strains_analysis/test/test_data/N5_271_010G1_
→˓scaffold_min1000.fa-vs-N5_271_010G2.sorted.bam.v6.IS value Location of
→˓SNVprofile object
version 0.6.0 value Version of inStrain
bam_loc N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G2.sorted.bam value
→˓Location of .bam file
scaffold_list /home/mattolm/Bio_scripts/TestingHouse/N5_271_010G1_scaffold_min1000.fa-
→˓vs-N5_271_010G2.sorted.bam.v6.IS/raw_data/scaffold_list.txt list 1d list of
→˓scaffolds, in same order as counts_table
counts_table /home/mattolm/Bio_scripts/TestingHouse/N5_271_010G1_scaffold_min1000.fa-
→˓vs-N5_271_010G2.sorted.bam.v6.IS/raw_data/counts_table.npz numpy 1d numpy
→˓array of 2D counts tables for each scaffold
scaffold2length /home/mattolm/Bio_scripts/TestingHouse/N5_271_010G1_scaffold_
→˓min1000.fa-vs-N5_271_010G2.sorted.bam.v6.IS/raw_data/scaffold2length.json
→˓dictionary Dictionary of scaffold 2 length
window_table /home/mattolm/Bio_scripts/TestingHouse/N5_271_010G1_scaffold_min1000.fa-
→˓vs-N5_271_010G2.sorted.bam.v6.IS/raw_data/window_table.csv.gz pandas Windows
→˓profiled over (not sure if really used right now)
raw_linkage_table /home/mattolm/Bio_scripts/TestingHouse/N5_271_010G1_scaffold_
→˓min1000.fa-vs-N5_271_010G2.sorted.bam.v6.IS/raw_data/raw_linkage_table.csv.gz
→˓pandas Raw table of linkage information
raw_snp_table /home/mattolm/Bio_scripts/TestingHouse/N5_271_010G1_scaffold_min1000.fa-
→˓vs-N5_271_010G2.sorted.bam.v6.IS/raw_data/raw_snp_table.csv.gz pandas Contains
→˓raw SNP information on a mm level
cumulative_scaffold_table /home/mattolm/Bio_scripts/TestingHouse/N5_271_010G1_
→˓scaffold_min1000.fa-vs-N5_271_010G2.sorted.bam.v6.IS/raw_data/cumulative_scaffold_
→˓table.csv.gz pandas Cumulative coverage on mm level. Formerly scaffoldTable.
→˓csv
cumulative_snv_table /home/mattolm/Bio_scripts/TestingHouse/N5_271_010G1_scaffold_
→˓min1000.fa-vs-N5_271_010G2.sorted.bam.v6.IS/raw_data/cumulative_snv_table.csv.gz
→˓pandas Cumulative SNP on mm level. Formerly snpLocations.pickle
scaffold_2_mm_2_read_2_snvs /home/mattolm/Bio_scripts/TestingHouse/N5_271_010G1_
→˓scaffold_min1000.fa-vs-N5_271_010G2.sorted.bam.v6.IS/raw_data/scaffold_2_mm_2_read_
→˓2_snvs.pickle pickle crazy nonsense needed for linkage
covT /home/mattolm/Bio_scripts/TestingHouse/N5_271_010G1_scaffold_min1000.fa-vs-N5_
→˓271_010G2.sorted.bam.v6.IS/raw_data/covT.hd5 special Scaffold -> mm ->
→˓position based coverage
snpsCounted /home/mattolm/Bio_scripts/TestingHouse/N5_271_010G1_scaffold_min1000.fa-
→˓vs-N5_271_010G2.sorted.bam.v6.IS/raw_data/snpsCounted.hd5 special Scaffold ->
→˓mm -> position based True/False on if a SNPs is there
clonT /home/mattolm/Bio_scripts/TestingHouse/N5_271_010G1_scaffold_min1000.fa-vs-N5_
→˓271_010G2.sorted.bam.v6.IS/raw_data/clonT.hd5 special Scaffold -> mm ->
→˓position based clonality
mapping_info /home/mattolm/Bio_scripts/TestingHouse/N5_271_010G1_scaffold_min1000.fa-
→˓vs-N5_271_010G2.sorted.bam.v6.IS/raw_data/mapping_info.csv.gz pandas Report on
→˓reads

This is what the columns correspond to:

name The name of the data. This is the name that you put into IS.get() to have inStrain retrieve the data for you.
See the section “Accessing raw data” for an example.

value This lists the path to where the data is located within the raw_data folder. If the type of data is a value, than this
just lists the value

type This describes how the data is stored. Value = the data is whatever is listed under value; list = a python list;

56 Chapter 1. Contents

inStrain, Release 1.0.0

numpy = a numpy array; dictionary = a python dictionary; pandas = a pandas dataframe; pickle = a piece of
data that’s stored as a python pickle object; special = a piece of data that is stored in a special way that inStrain
knows how to de-compress

description A one-sentence description of what’s in the data.

Warning: Many of these pieces of raw data have the column “mm” in them, which means that things are
calculated at every possible read mismatch level. This is often not what you want. See the section “Dealing with
mm” for more information.

Accessing other data

In addition to the raw_data described above, there are a couple of other things that inStrain can make for you. You
access these from methods that run on the IS object itself, instead of using the get method. For example:

import inStrain
import inStain.SNVprofile

IS = inStain.SNVprofile.SNVprofile(``/home/mattolm/inStrainOutputTest/``)
coverage_table = IS.get_raw_coverage_table()

The fellowing methods work like that:

get_nonredundant_scaffold_table() Get a scaffold table with just one line per scaffold, not multiple mms

get_nonredundant_linkage_table() Get a linkage table with just one line per scaffold, not multiple mms

get_nonredundant_snv_table() Get a SNP table with just one line per scaffold, not multiple mms

get_clonality_table() Get a raw clonality table, listing the clonality of each position. Pass nonredundant=False to
keep multiple mms

Dealing with “mm”

Behind the scenes, inStrain actually calculates pretty much all metrics for every read pair mismatch level. That is,
only including read pairs with 0 mis-match to the reference sequences, only including read pairs with >= 1 mis-match
to the reference sequences, all the way up to the number of mismatches associated with the “PID” parameter.

For most of the output that inStrain makes in the output folder, it removes the “mm” column and just gives the results
for the maximum number of mismatches. However, it’s often helpful to explore other mismatches levels, to see how
parameters vary with more or less stringent mappings. Much of the data stored in “read_data” is on the mismatch
level. Here’s an example of what the looks like (this is the cumulative_scaffold_table):

,scaffold,length,breadth,coverage,coverage_median,coverage_std,bases_w_0_coverage,
→˓mean_clonality,median_clonality,unmaskedBreadth,SNPs,breadth_expected,ANI,mm
0,N5_271_010G1_scaffold_102,1144,0.9353146853146853,5.106643356643357,5,2.
→˓932067325774674,74,1.0,1.0,0.6145104895104895,0,0.9889923642060382,1.0,0
1,N5_271_010G1_scaffold_102,1144,0.9353146853146853,6.421328671328672,6,4.
→˓005996333777764,74,0.9992001028104149,1.0,0.6748251748251748,0,0.9965522492489882,1.
→˓0,1
2,N5_271_010G1_scaffold_102,1144,0.9423076923076923,7.3627622377622375,7,4.
→˓2747074564903285,66,0.9993874800638958,1.0,0.7928321678321678,0,0.998498542620078,1.
→˓0,2
3,N5_271_010G1_scaffold_102,1144,0.9423076923076923,7.859265734265734,8,4.
→˓748789115369562,66,0.9992251555869703,1.0,0.7928321678321678,0,0.9990314705263914,1.
→˓0,3

(continues on next page)

1.6. Advanced use 57

inStrain, Release 1.0.0

(continued from previous page)

4,N5_271_010G1_scaffold_102,1144,0.9423076923076923,8.017482517482517,8,4.
→˓952541407151938,66,0.9992251555869703,1.0,0.7928321678321678,0,0.9991577528529144,1.
→˓0,4
5,N5_271_010G1_scaffold_102,1144,0.9458041958041958,8.271853146853147,8,4.
→˓9911156795536105,62,0.9992512780077317,1.0,0.8024475524475524,0,0.9993271891539499,
→˓1.0,7

As you can see, the same scaffold is shown multiple times, and the last column is mm. At the row with mm = 0, you
can see what the stats are when only considering reads that perfectly map to the reference sequence. As the mm goes
higher, so do stats like coverage and breadth, as you now allow reads with more mismatches to count in the generation
of these stats. In order to convert this files to what is provided in the output folder, the following code is run:

import inStrain
import inStain.SNVprofile

IS = inStain.SNVprofile.SNVprofile(``/home/mattolm/inStrainOutputTest/``)
scdb = IS.get('cumulative_scaffold_table')
ScaffDb = scdb.sort_values('mm')\

.drop_duplicates(subset=['scaffold'], keep='last')\

.sort_index().drop(columns=['mm'])

The last line looks complicated, but it’s very simple what is going on. First, you sort the database by mm, with
the lowest mms at the top. Next, for each scaffold, you only keep the row with the lowest mm. That’s done us-
ing the drop_duplicates(subset=['scaffold'], keep='last') command. Finally, you re-sort the
DataFrame to the original order, and remove the mm column. In the above example, this would mean that the only row
that would survive would be where mm = 7, because that’s the bottom row for that scaffold.

You can of course subset to any level of mismatch by modifying the above code slightly. For example, to generate this
table only using reads with <=5 mismatches, you could use the following code:

import inStrain
import inStain.SNVprofile

IS = inStain.SNVprofile.SNVprofile(``/home/mattolm/inStrainOutputTest/``)
scdb = IS.get('cumulative_scaffold_table')
scdb = scdb[scdb['mm'] <= 5]
ScaffDb = scdb.sort_values('mm')\

.drop_duplicates(subset=['scaffold'], keep='last')\

.sort_index().drop(columns=['mm'])

Warning: You usually do not want to subset these DataFrames using something like scdb =
scdb[scdb['mm'] == 5]. That’s because if there are no reads that have 5 mismatches, as in the case above,
you’ll end up with an empty DataFrame. By using the drop_duplicates technique described above you avoid this
problem, because in the cases where you don’t have 5 mismatches, you just get the next-highest mm level (which
is usually what you want)

Performance issues +————–

inStrain uses a lot of RAM. In the log file, it often reports how much RAM it’s using and how much system RAM is
available. To reduce RAM usage, you can try the following things:

• Use the --skip_mm flag. This won’t profile things on the mm level (see the above section), and will treat
every read pair as perfectly mapped

• Use quick_profile to figure out which scaffolds actually have reads mapping to them, and only run inStrain

58 Chapter 1. Contents

inStrain, Release 1.0.0

on those

A quick and dirty estimate of resources required (as of version 1.2.12):

The required RAM (in Gb) is 0.4 times the length of the .fasta being mapped to (in Mbp). This is assuming the whole
genome is covered by at least 1 read; portions of the .fasta file that have 0 reads mapping do not count.

The runtime (in minutes) is 13 times the number of read base pairs in the input .bam file (in Gbp).

1.6.3 A note for programmers

If you’d like to edit inStrain to add functionality for your data, don’t hesitate to reach out to the authors of this program
for help. Additionally, please consider submitting a pull request on GitHub so that others can use your changes as
well.

1.6. Advanced use 59

	Contents
	Installation
	Overview and FAQ
	Tutorial
	Program documentation
	Example output and explanations
	Advanced use

